HOW DO I FUND ALL MY DEFERRED MAINTENANCE NEEDS?
HOW DO WE SERVE NEW CAPITAL PROJECTS WITH EXISTING INFRASTRUCTURE ISSUES?
HOW DO WE MAKE THE MOST OF AVAILABLE FUNDS WHILE PLANNING FOR THE FUTURE?
THE PROJECT

BUTLER UNIVERSITY CHILLED WATER PLAN

AMANDA DOENGES, PE
Client Strategies Leader
HEAPY

RYAN O'CONNELL, PE
Senior Mechanical Engineer
HEAPY

TAYLOR SMITH
Campus Engineer
Butler University

Building a More Resilient and Sustainable Society
ABOUT BUTLER UNIVERSITY

- Private Institution – Indianapolis, IN
- Founded in 1855
- Current campus since 1928
- 6 colleges
- 300 acres
- 3.1M+ square feet
THE EXISTING PLANT

- Existing plant:
 - 1800 tons, 3 water cooled chillers in Jordan Hall
 - 700 tons, 2 air cooled chillers in ResCo
- 10 buildings, 1.045Msf served
EXISTING CHALLENGES

• “Not enough capacity to cool buildings”
• Chilled water flow issues
• No year-round cooling capability
• Equipment past median expected service life
2 new capital projects
Existing cooling capacity
Existing plant operational issues
Challenges in hiring maintenance staff
Pressure to reduce operational costs
Campus cooling needs during construction
Central plant location
- Existing building
- Heart of campus
• Central plant vs. stand alone
• Central plant more cost effective
• Project funding
 – Capital projects
 – Deferred maintenance
Project Budget & Team
- $6.6M total project cost
- Aggressive Construction Schedule
- Heapy Engineering – MEP Design
- Pepper Construction – CM
- Browning Day Mullins Dierdorf – Architecture
- CE Solutions – Structure

Unique Project Components
- Technology
 - 3D point cloud survey, Revit
 - BIM Modeling and Navisworks coordination
 - AR Construction Assistance
 - BIM/CMMS Integration
- Operational Considerations
 - Delta T control issues
 - Switch to open controls platform
 - Automated plant operation control
 - Schedule
 - Cooling tower wall
- Chiller selection
 - Pre purchase bid package
PROJECT DETAILS

- New plant:
 - 2700 tons, 3 water cooled chillers in Jordan Hall
 - 700 tons, 2 air cooled chillers in ResCo
- 11 buildings, 1.2Msf served
TECHNOLOGY - CONSTRUCTION

Building a More Resilient and Sustainable Society
TECHNOLOGY - CONSTRUCTION

Building a More Resilient and Sustainable Society
EXISTING PLANT ISSUES

- Issues Identified:
 - Majority of plant controlled in hand
 - Low deltaT issues (often as low as 3-4°F)
 - No year-round operational capabilities
 - Noise concerns
 - Energy Efficiency a goal
Low ▲ T issues can be cause by numerous sources:
- Aging cooling coils or improperly selected coils
- Three-way valves (bypassing water)
- Control valve issues (over-flowing coils)

Low ▲ T causes increased pump energy usage due to increased flow required

▲ T degradation over time is inevitable in large CHW plants and must be addressed over time
But wait, won’t this cause discharge air temperature issues leading to space temp loss, humidity issues, etc.?
Design – ΔT Flow Control

ΔT Benefits:

- Decouples buildings
 - Isolates issues
 - Gives operator control over “problem” buildings which negatively affect the plant, thus the whole campus

- Identifies “Problem” Buildings
 - Helps owner identify which buildings are good candidates for AHU replacements, pump/flow building studies, etc.
PRE-PURCHASE BID PACKAGE

• Chillers
 – Lead times for chillers impacted project schedule
 – Multiple manufacturers’ selections evaluated
 – Manufacturers were given flexibility to bid their best options

• Controls
 – “Parts and Smarts”
 – Chiller Plant Optimizer “CPO10” by JCI was purchased
CHILLER BID EVALUATION

Alternatives by Electricity Cost

<table>
<thead>
<tr>
<th>Option No.</th>
<th>Alternative Name</th>
<th>HX</th>
<th>Refrigerant Migration</th>
<th>Description</th>
<th>Plant Capacity (tons)</th>
<th>Total Electricity Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>JCI</td>
<td></td>
<td></td>
<td>3 x 900 ton chillers</td>
<td>2700</td>
<td>$140,868</td>
</tr>
<tr>
<td>4</td>
<td>JCI w/ FC</td>
<td>X</td>
<td></td>
<td>3 x 900 ton chillers</td>
<td>2700</td>
<td>$118,800</td>
</tr>
<tr>
<td>2</td>
<td>Manuf. A Efficiency</td>
<td>X</td>
<td></td>
<td>5 x 520 ton chillers</td>
<td>2600</td>
<td>$125,269</td>
</tr>
<tr>
<td>5</td>
<td>Manuf. B w/ RM</td>
<td>X</td>
<td></td>
<td>2 x 1000 ton chillers, 1 x 600 ton chiller</td>
<td>2600</td>
<td>$161,929</td>
</tr>
<tr>
<td>6</td>
<td>Manuf. B</td>
<td>X</td>
<td></td>
<td>2 x 1000 ton chillers, 1 x 600 ton chiller</td>
<td>2600</td>
<td>$135,311</td>
</tr>
<tr>
<td>1</td>
<td>Manuf. A Value</td>
<td>X</td>
<td></td>
<td>4 x 650 ton chillers</td>
<td>2600</td>
<td>$142,965</td>
</tr>
<tr>
<td>8</td>
<td>Manuf. B 4160V</td>
<td>X</td>
<td></td>
<td>2 x 1000 ton chillers, 1 x 600 ton chiller</td>
<td>2600</td>
<td>$138,611</td>
</tr>
<tr>
<td>7</td>
<td>Manuf. B 4160V w/ RM</td>
<td>X</td>
<td></td>
<td>2 x 1000 ton chillers, 1 x 600 ton chiller</td>
<td>2600</td>
<td>$165,420</td>
</tr>
</tbody>
</table>
CHILLER BID EVALUATION

<table>
<thead>
<tr>
<th>Option No.</th>
<th>HX</th>
<th>Alternative Name</th>
<th>First Cost Bid ($)</th>
<th>Yearly Electricity Cost ($)</th>
<th>Additional Electrical Cost From Baseline ($/year)</th>
<th>30-year Lifetime Additional Cost ($)</th>
<th>First Cost Savings vs. Baseline Bid ($)</th>
<th>Simple Payback vs. Baseline (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>JCI</td>
<td>$822,024</td>
<td>$140,868</td>
<td>$22,068</td>
<td>$662,039</td>
<td>$179,000</td>
<td>8.1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td>JCI w/ FC</td>
<td>$1,001,024</td>
<td>$118,800</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>Manuf. A Efficiency</td>
<td>$996,500</td>
<td>$125,269</td>
<td>$6,468</td>
<td>$194,051</td>
<td>$4,524</td>
<td>0.7</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>Manuf. A Value</td>
<td>$866,500</td>
<td>$142,965</td>
<td>$24,165</td>
<td>$724,938</td>
<td>$134,524</td>
<td>5.6</td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td>Manuf. B w/ RM</td>
<td>$824,000</td>
<td>$161,929</td>
<td>$43,129</td>
<td>$1,293,859</td>
<td>$177,024</td>
<td>4.1</td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td>Manuf. B</td>
<td>$929,000</td>
<td>$135,311</td>
<td>$16,510</td>
<td>$495,314</td>
<td>$72,024</td>
<td>4.4</td>
</tr>
<tr>
<td>8</td>
<td>X</td>
<td>Manuf. B 4160V</td>
<td>$919,000</td>
<td>$138,611</td>
<td>$19,811</td>
<td>$594,339</td>
<td>$82,024</td>
<td>4.1</td>
</tr>
<tr>
<td>7</td>
<td>X</td>
<td>Manuf. B 4160V w/ RM</td>
<td>$814,000</td>
<td>$165,420</td>
<td>$46,620</td>
<td>$1,398,608</td>
<td>$187,024</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Baseline
Simple payback for installing waterside economizer HX
Lowest First Cost (Contractor selected option in competitive bid environment)
CHILLER BID EVALUATION

• Worked with Heapy and Pepper
 – Up front cost
 – Energy savings
 – Noise
 – Maintenance

• Site visits with maintenance staff

• HX – unclear of available funds up early on. Added later
This was the best plant for Butler

Use evaluation tools/considerations to design the best plant for you
 – Prioritize

Work with your design/construction team to push the envelope – biggest bang for your buck
• Engineer involvement throughout construction = critical
• What are your priorities?
 – Maintaining workforce
 – Pressures for operational budget reductions
 – Energy reduction goals
 – Addressing deferred maintenance/operational issues?
• PLAN PLAN PLAN!
 – Significant reduction in change orders
 – Schedule
 – Budget
QUESTIONS?
THANK YOU!