

DYNAMIC UTILITY MASTER PLANNING

Ben Dombrowski, PE Mechanical Engineer, Energy & Power Solutions

Why Master Plan?

OPERATIONS & MAINTENANCE

TRANSITIONS

SEVERAL POTENTIAL PLANS

CHANGES TO PLAN

Changes or availability of TECHNOLOGY

CHANGES TO PLAN

CHANGES TO PLAN

How do we support currently required utilities while adapting to future changes?

Going Beyond Today

Complete real time option analysis based on current conditions

Going Beyond Today

Complete real time option analysis based on current conditions

Incorporate and evaluate new technology & goals

Going Beyond Today

Complete real time option analysis based on current conditions

Incorporate and evaluate new technology & goals

Identifies utility requirements for supporting future projects

Key Inputs & Outputs

JACOBS

Dynamic Planning Toolkit

LOAD DISTRIBUTION MODELING **PLANNING**

JACOBS

LIFE CYCLE COST ANALYSIS

PLANNING

Load Modeling

Boilers Located in CEP					Buildings on CEP Steam			
Boiler	MBtuh	Date Installed	Life			Armour Academic Facility	✓	Centra
CEP#1	23,433	2009	40		✓	Atrium Building	✓	Ortho
CEP#2	23,433	2009	40			Chiller Plant (PPP)	✓	East 1
CEP#3	23,433	2009	40			Cohn Research	✓	AACC
CEP#4	13,390	2009	40			Jelke	✓	Centra
CEP#5	70,000	2015	40			Johnston R. Bowman		New F
CEP#6	70,000	2020	40			Kellogg Pavilion	\checkmark	Atriun
						Pavilion	\checkmark	Tunne
						Professional Bldg. 1		
						Professional Bldg. 2		
						Professional Bldg. 3		

Rush University Medical Center Central Energy Plant

stem

ral Energy Plant (CEP)

pedic Ambulatory Building

14

Tower

al HUB

Research Building

m Expansion

el

Load Modeling

University of Massachusetts – Boston

Central Energy Producing Facility, Heating & Load Capacity

JACOBS

U Distribution Planning

Confidential Client Chilled Water Distribution

JACOBS

Life Cycle Cost Analysis

Confidential Client Utility Master Plan

JACOBS

Life Cycle Cost Savings \$6,015,334

Projected Cost Reduction 26%

Average Annual Utility Savings Electrical: 0 kWh Nat. Gas: 110,161 mmBTU Water: 0 kGal

Sustainability Tracker

JACOBS

Business as Usual

2026 2028 2030

Option Analysis

District energy	VS	Decentralized
Minimum capacity	VS	Redundancy
BAU	VS	Annual goal co
BAU	VS	Optimized infr

ompliance

astructure

\$ Capital Planning

Utility Upgrade Cost

Building Construction Cost

Summary

Flexibility over the entire lifetime of the utility master plan

Summary

Flexibility over the entire lifetime of the utility master plan

Collaborative effort and vision between stakeholders

Summary

Flexibility over the entire lifetime of the utility master plan

Collaborative effort and vision between stakeholders

Robust plan providing long term savings and definitive answers

Ben Dombrowski

Booth #27 ben.dombrowski@jacobs.com 919.334.3118

