### Microgrid/Smartgrid Research Facility

**US Department of Energy, Energy Systems Integration Facility Case Study** 



2015 IDEA Conference Clean Campus Energy for the Next Generation Denver, Colorado



Dave Sereno, PE, LEED AP Kevin Krause, PE, LEED AP



### **Presenters**



Dave Sereno, PE, LEED AP

Principal

dsereno@aeieng.com



Kevin Krause, PE, LEED AP

Principal

kdkrause@aeieng.com

## **Learning Objectives**

- Understand research and associated infrastructure requirements to advance smartgrids and microgrids.
- Understand extents of DC components and power converters and their associated challenges and hazards.
- Understand key component challenges in the optimization of safe, reliable and sustainable smartgrids and microgrids.

### ESIF Mission to Enable "Smart Grid"



# **ESIF Genesis: DERTF Precursor Facility**



Test and Evaluation of all types of distributed generation, storage and interconnection systems

## **ESIF Genesis: DERTF Precursor Facility**

#### **Distributed Energy Research Test Facility (DERTF)**

**Example Projects – Interconnection System Testing** 



# DOE NREL South Table Mountain Campus Golden, Colorado



# Q: Why NREL ESIF as a case study?



# **Three Building Components: East Elevation**



### **ESIF Laboratories**











- 2. **Smart Power**
- 3. **Energy Storage**
- 4. **Electrical Characterization**
- **Energy Systems Integration**

#### **Thermal Systems Laboratories**

- Thermal Storage Process and Components
- **Thermal Storage Materials**
- **Optical Characterization**

- 9. **Energy Systems Fabrication**
- Manufacturing 10.
- Materials Characterization 11.
- 12. Electrochemical Characterization
- **Energy Systems Sensor** 13.
- Fuel Cell Development & 14. Test
- 15. **Energy Systems High Pressure Test**

#### **High Performance Computing, Data Analysis, and Visualization**

- **ESIF Control Room** 16.
- 17. **Energy Integration Visualization**
- Secure Data Center 18.
- 19. **High Performance Computing** Data Center
- **Insight Center Visualization** 20.
- **Insight Center Collaboration** 21.

# **Hydrogen Systems**



# Safety Programming: Proactive and Reactive





# **Conceptual Site Plan**



# Three Scales: Residential, Commercial & Industrial/Grid



## **Conceptual Connectivity**



### **ESIF Research Infrastructure**

- Research Electrical Distribution Bus − REDB (AC 3ph, 600V, 1200A and DC +/-500V, 1200A)
- Thermal Distribution Bus
- Fuel Distribution Bus
- Supervisory Control and Data Acquisition (SCADA)



# Research Electrical Distribution Bus (REDB)



# Research Electrical Distribution Bus (REDB)

#### AC

- Rated 600Vac 3φ, 2φ, or 1φ
- 5-wire design: neutral with selectable ground bonding location
- 16 Hz to 400 Hz
- 250A and 1600A installed
- 250A and 2500A planned (future)
- Experiment connection via cart CB, bus plug CB or fuse, or direct (main lug only)
- Connects PSIL, SPL, ESL, GSE, LBE, LVOTA, MVOTA, ESIL

#### DC

- Rated ±500Vdc or 1000Vdc
- 4-wire design: positive, negative, common, and ground
- Any pole may be tied to ground at selectable location
- 250A and 1600A installed
- 250A and 2500A planned (future)
- Experiment connection via cart contactor/fuse or direct (main lug only)
- Connects PSIL, SPL, ESL, PVE, LVOTA, MVOTA, ESIL

# Research Electrical Distribution Bus (REDB)

#### Figure 1: ESIF Research AC Bus One-Line Diagram

DOES NOT INCLUDE HOUSE POWER



## **REDB: 20,000 Circuit Permutations**

 Unconstrained: Total # Circuits (all Combinations)

1.33499E+95!!!

One Constraint:
 Total # Circuits (all Combinations)
 3.96141E+28!!

Three Constraints:
 Total # Circuits (all Combinations)
 1.932E+4!
 (19,320)

## **REDB: One Permutation Example**

#### National Renewable Energy Laboratory Energy Systems Integration Facility

#### ALLOWABLE SWITCHING CONFIGURATION



DOES NOT INCLUDE HOUSE POWER

All relays shown are controlled and monitored from main control room by master SCADA system



Manually operated disconnect switch



TYPICAL:
BREAKERS TO
BE OPENED
FOR
SCENARIO 2

Each line shown represents a 3-Phase, 4-wire AC Bus with full size neutral and ground conductors

Figure 2: ESIF Research DC Bus One-Line Diagram

DOES NOT INCLUDE HOUSE POWER

TYPICAL: BREAKERS TO BE OPENED FOR SCENARIO 1

# **ESIF Laboratory Control Room**



### **ESIF SCADA**

# Supervisory Control And Data Acquisition

- Electrical systems
- High speed data capture
- Thermal controls
- Gas valving and process controls



02 10 45246

A21: 250 A AC Dwg 604

### **IEEE 1547.1 Testing**

- ✓ Abnormal voltage (5.2)
- ✓ Abnormal frequency (5.3)
- ✓ Synchronization (5.4)
- ✓ DC injection (5.6)
- ✓ Unintentional islanding (5.7)
- ✓ Reverse power (5.8)
- ✓ Reconnect (5.10)
- ✓ Harmonics (5.11)

#### **Planned Capabilities**

- Temperature stability (5.1)
- Open phase (5.9)

#### **Not Currently Planned**

- Interconnection integrity (5.5)
- Flicker (5.12)

# Inverter/Power Electronics Testing Capabilities

#### **Basic**

- Interconnection Standard Testing (e.g. IEEE 1547)
  - Over / Under Voltage and Frequency
  - Power Quality
  - o Islanding, etc.
- Steady-state Performance
- PLL Response
- Maximum Power Point Tracking
- Efficiency
- Battery cycling

#### **Advanced**

- Advanced Functions
  - LVRT
  - o FRT
  - Volt/VAR
  - Frequency/Watt
  - Volt/Watt
- 4-quadrant Operation
- Abnormal Grid Conditions
  - Loss of phase
  - Sags, Swells
  - o Fault

## **Additional Testing Efforts**

- Electric vehicles
- Battery energy storage
- Other energy storage
- Microgrids
- Home energy, appliances
- Fuel cell vehicles
- Hydrogen production and utilization systems

# Large Advanced Inverter Development/Testing





# **Team Participants**



#### **DESIGN**

SmithGroupJJR

Affiliated Engineers, Inc

Martin & Martin

#### **CONSTRUCTION**

JE Dunn Construction Company
MTech Mechanical
Encore Electric, Inc.

### Microgrid/Smartgrid Research Facility

**US Department of Energy, Energy Systems Integration Facility Case Study** 

