

AGENDA

- ▶ Installations
- ► Technology Overview
- ► Footprint
- ▶ Performance
- ► Power to Heat Ratio
- ► Thermal Load Following
- ► Fuel Flexibility
- ► Emissions & Permitting
- ► Vibrations & Acoustics
- Capital Costs
- ► O&M Costs
- ▶ Decision Matrix
- ▶ Case Study

TECHNOLOGY OVERVIEW

- Gas turbines (4-50+ MW)
- ► Reciprocating engines (2-18 MW)

CTG/REG INSTALLATION

- CTG installation more abundant
- ▶ Large REG installation popularity growing, still significant number of installations
- CHP market in US dominated by turbines

FOOTPRINT

- ► For smaller applications footprints are similar
- ► For larger applications, footprint of CTG smaller than REG

PERFORMANCE

Considering the previous REG/CTG comparisons:

Unit	Power Output (MW)	Heat Rate (BTU/kWh, LHV)	Exhaust Gas Flow (lb/hr)	Exhaust Gas Temperature (°F)
7.5 MW REG	7.5	7,400	94,000	734
7.5 MW CTG	7.5	10,100	214,000	960
17 MW REG	17	7,100	246,000	707
15 MW CTG	15	9,700	395,000	940
3 x 17 MW REG	51	7,100	737,000	707
50 MW CTG	50	7,100	1,100,000	890

^{*}Heat rate of REGs generally much lower than CTG counterpart

^{*}Thermal (exhaust) output of REGs generally much lower than CTG counterpart

PERFORMANCE

- Power to heat ratio
- Selecting the appropriate prime mover allows the best utilization of capital with the ability to base load the equipment.

REG					
MW	Total Heat MWt	Power / Heat			
4.0	3.8	1.041			
4.5	4.2	1.071			
5.4	3.7	1.456			
6.5	5.8	1.123			
7.4	4.9	1.523			

СТС					
MW	Total Heat MWt	Power / Heat			
3.5	6.3	0.553			
4.6	7.8	0.590			
5.7	8.9	0.638			
6.3	9.5	0.666			
8.0	10.9	0.736			

PERFORMANCE: THERMAL LOAD FOLLOWING

- Exhaust gas bypass damper:
- ▶ CTG: on/off, REG: modulating

PERFORMANCE: THERMAL LOAD

FOLLOWING CTG

Thermally limited: add steam drive chiller (or other steam sink)

PERFORMANCE: THERMAL LOAD FOLLOWING REG

 Modulating exhaust gas bypass damper prevents shutdown due to lack of thermal load

FUEL FLEXIBILITY

- Generally, REG's only operate on gaseous or liquid fuel; fuel type specifies machine type.
 - Few units available to operate on gaseous and liquid fuel
 - Propane operation requires 25%+ electrical derate
- ▶ Generally, CTG's capable of consuming wide variety of gaseous/liquid fuels
 - Certain fuels may dictate higher emissions combustors

Gaseous	Liquid
Natural Gas	Light Fuel Oil
Propane	Heavy Fuel Oil
Syngas	Crude Oil
Landfill Gas	Fuel Water Emulsion
Process Off Gas	Liquid Biofuel
Digester Gas	

EMISSIONS & PERMITTING

- ▶ Generally, CTGs offer lower emissions than REG counterparts
- ► SCR can reduce CO, No_x by 80-90%

Peerless SCR

VIBRATIONAL & ACOUSTICAL

- CTG Vibration
 - Typically manageable
- Sound
 - Sound-attenuating enclosures
 - Intake air silencers
 - Exhaust gas silencers

- REG Vibration
 - Anti-vibration mounts
 - Isolating pads
- Sound
 - Smaller units enclosed
 - Intake air silencers
 - Exhaust gas silencers

Anti-vibration mount

IAC Exhaust Silencer

CTG Enclosure

CAPITAL COSTS

- Among smaller options (<5 MW), capital costs are similar between CTGs, REGs (no BOP considered).
- Among larger options, capital costs of CTGs are less.

O&M COSTS

- Variable O&M
 - Minor maintenance
 - Lube Oil Consumption (REGs)
 - SCR Reagent Consumption
 - Major Maintenance
- Fixed O&M
 - Plant Operations

O&M COSTS

O&M Cost Differences

- Variable O&M
 - Overhaul may fall under separate contract for REGs
 - Trained plant operators may perform minor REG maintenance
 - REG O&M costs vary largely between manufacturers

- Variable O&M costs:
 - REG \$0.005/kWh-\$0.010/kWh
 - CTG \$0.007/kWh-\$0.011/kWh

DECISION MATRIX

Points	Criteria	REG	CTG
Weight: [5] Range: 0-5	Q: What is the power to heat ratio? (kW * 3412) / (BTU/H). Score: Ratio of 1.0 to 1.5+, all points to REG Ratio of <0.55 to 0.74, all points to CTG		
Weight: [] Range: 0-5	Q: What is the impact of space? Score: If greenfield site or size < 20 MW REG & CTG = 50% * Weight. If existing site, size > 20 MW, tight plant arrangement REG = 25% * Weight, CTG = 75% * Weight		
Weight: [] Range: 0-5	Q: What fuel diversity is required? Score: If gaseous and liquid fuel desired REG = 25% * Weight, CTG = 75% * Weight. Else REG & CTG = 50% * Weight		
Weight: [] Range: 0-5	Q: What startup time is required? Score: If less than five minutes all points to REG. Else REG & CTG = 50% * Weight		
Weight: [] Range: 0-5	Q: What level of emissions is desired? Score: If permitting process difficult and tight emission tolerances required CTG = 75% * Weight. Else REG & CTG = 50% * Weight		
Weight: [] Range: 0-5	What concern is plant vibration and acoustics? Score: If plant vibration and acoustics are major concerns CTG = 75% * Weight. Else REG & CTG = 50% * Weight		
	Totals		

QUESTIONS

Kurt Koenig
Associate, Senior Project Manager
P 919-900-1864
E kkoenig@burnsmcd.com