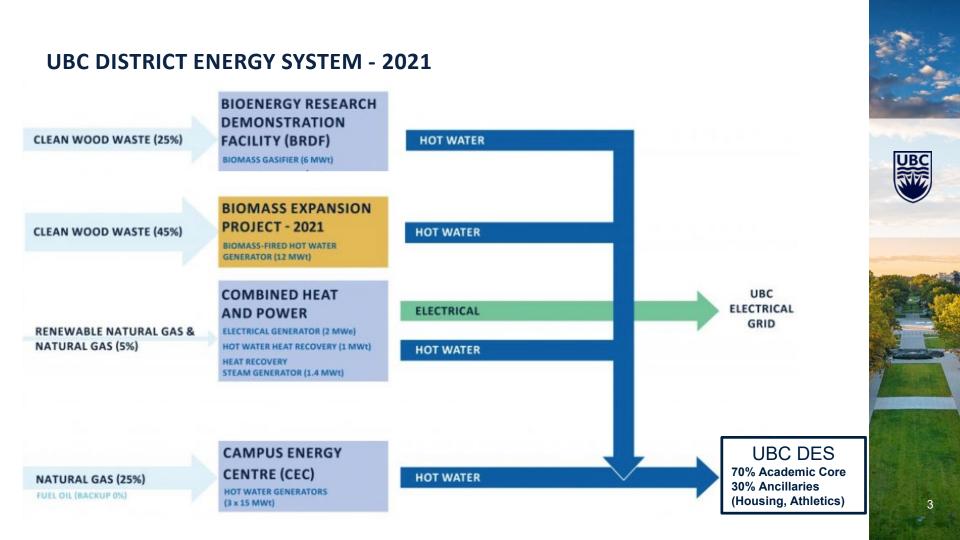
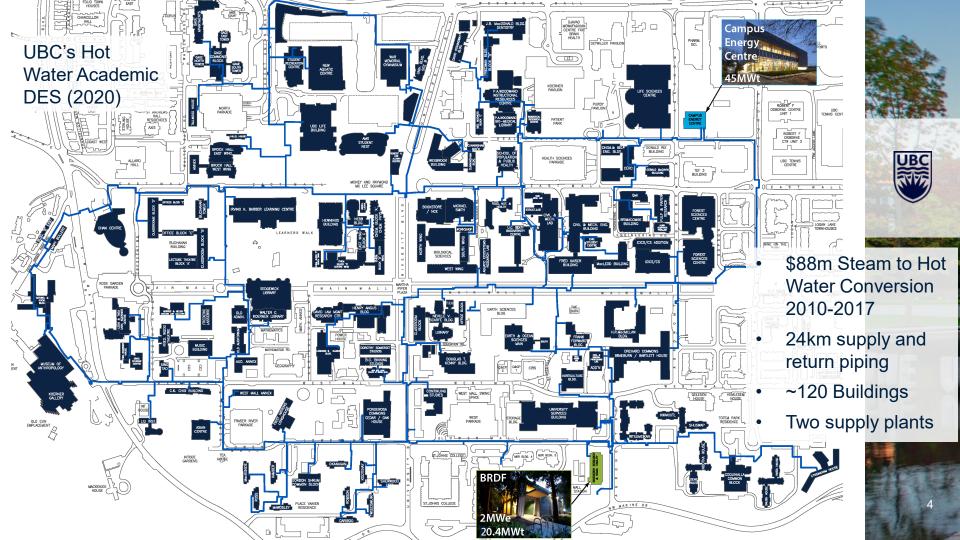

University of British Columbia (UBC) Case study: Use of Real-Time Hydraulic Modeling



IDEA 2020 CAMPUS ENERGY CONFERENCE, DENVER, CO, USA




Feb 12, 2020


### BACKGROUND

This presentation is a **University of British Columbia case study** how UBC, based on **real-time distribution system hydraulic modeling, gained detailed control** of the operation, system optimization path, system expansion, system bottle necks, among others of their **hot water based district energy system, to monitor their CAD \$88 million investment.** 

UBC transformed their district energy system to one of worlds leading medium temperature hot water system. Hydraulic modeling was a key component in this process and the real-time hydraulic modeling solution implemented in 2018 - in record time of just 3 months - has become **a strategic decision support tool**. Offline and Real-time hydraulic modeling is used for the day-to-day operational management, troubleshooting, engineering, planning for changes and additions of new buildings, distribution system piping and plant capacity.

The investment of the real-time hydraulic modeling solution has provided readily available information that has aided in decision making while avoiding professional fees, **paying itself back in less than 24 months**. This presentation is a hands-on experience and includes **demo** to serve as an inspiration for all utilities interested in transforming their energy systems and to improve the efficiency of their energy systems.



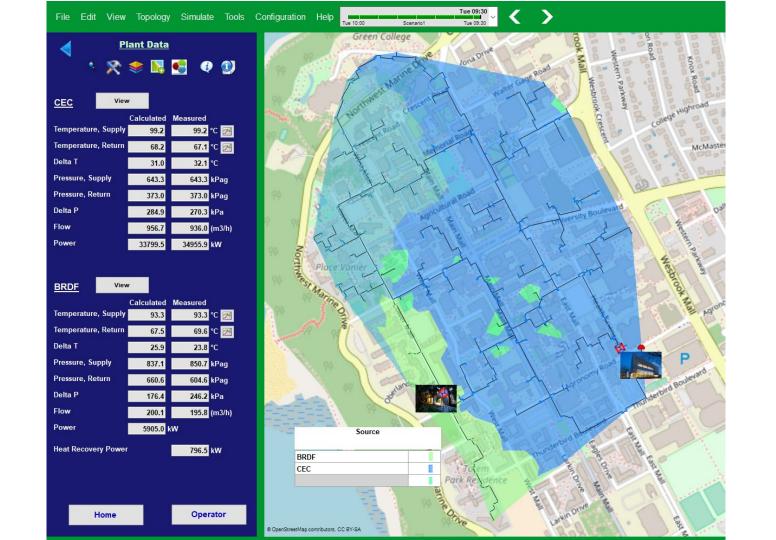


### HOW IS UBC MONITORING THIS \$88 MILLION INVESTMENT?



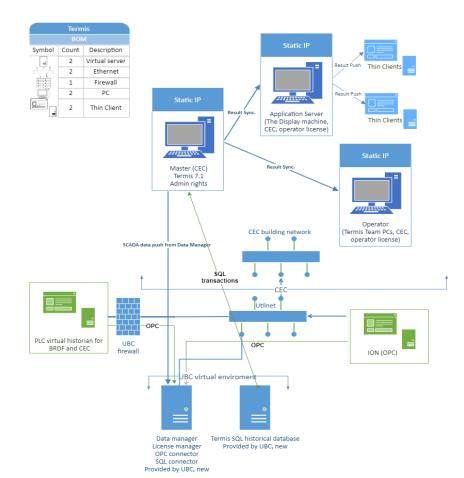
| UBC   | ✓ ☐ Josh Wauthy ✓                                                                                           |
|-------|-------------------------------------------------------------------------------------------------------------|
|       | DES Snapshot DES History DES Single-Building Best Delta-Ts Regression Analysis Worst Delta-Ts               |
| <     | Today                                                                                                       |
| 50MW  | BRDF Power  CEC Power  Total Measured Building Demand                                                       |
| 40MW  | ~                                                                                                           |
| 30MW  | man processing                                                                                              |
| 20MW  |                                                                                                             |
| 10MW  |                                                                                                             |
| 0MW   |                                                                                                             |
| 2"C   | Outdoor Air Temperature Outdoor Condition                                                                   |
| 1.5°C |                                                                                                             |
| 1°C   | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$                                                                        |
| 0.5°C | ·····                                                                                                       |
| 0°C   |                                                                                                             |
|       | BRDF Entering Water Temp     BRDF Leaving Water Temp     CEC Entering Water Temp     CEC Leaving Water Temp |
| 100°C |                                                                                                             |
| 80°C  |                                                                                                             |
| 60°C  | za 1a 2a 3a 4a 5a 6a 7a 8a 9a 10a 11a 12p 1p 2p 3p 4p 5p 6p 7p 8p 9p 1                                      |

DES meters in all buildings trended alongside plant scada & field data collected and stored into a unified historian database for analytics.




Leak detection system



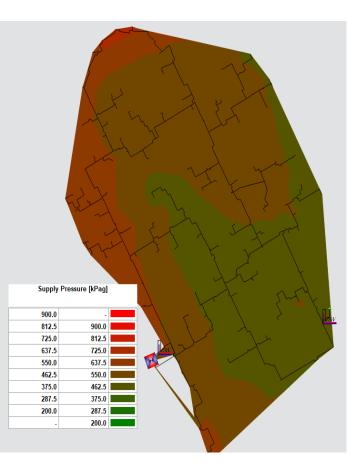

Termis real-time model







### **TERMIS IMPLEMENTATION**




- Spring of 2018 3 months
- High level of buy-in and support from all levels
- IT resources
- Required an all around effort to integrate plant and building data into the Termis background databases
- IT resources
- Staff training on data administration as well as model use
- Ongoing model & data management, IT infrastructure upgrades, ongoing calibration to reflect reality

## **MODELING – WHAT AND WHY**

Industry preferred District Energy management software which models the whole district system (plant, piping, consumer)

- Hydraulic and thermal model that performs calculations of flow, pressures, losses, temperatures, velocities, gradients for every single pipe
- Developed in Denmark and implemented worldwide
- Both offline and real-time configurations
- Provides ability to observe and manage performance of the whole system
- "Eyes" on your whole district energy system
- SI units
- Planning and Design
- Optimization & Efficiency
- Operational & KPI tracking





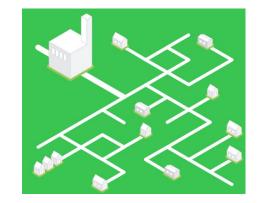
### Real-Time Dynamic Modeling versus Static Modeling Elimination of the "black hole syndrome" and guess work

Scalable solution starting simple and adding functionality on a solid platform:

- 1. Static: How it should work
  - 1. Limited to a specific point in time
  - 2. Post analyses labor intensive
- 2. Real Time: Facts-Calibration
  - 1. Control Room and Field Operations monitoring and diagnostics
  - 2. Immediate Optimization of pressures, flows, temperature, losses, and equipment wear and tear



Investment: Plants and ETS/Buildings 70%


Distribution System Piping 30%



### **BENEFITS OF REAL-TIME MODELING**

## **Planning and Design**

- Decision Support Information to the management, operation, maintenance, planning, design and commissioning of thermal energy networks
- Pipe sizing for new network extensions / buildings
- Design pipes, pumps, valves
- Evaluation of control schemes "As-Is" and planned changes
- Plan outages and valving off parts of the system
- Perform "What-if" scenarios Feasibility studies, Energy Master Plan







## **BENEFITS OF REAL-TIME MODELING**

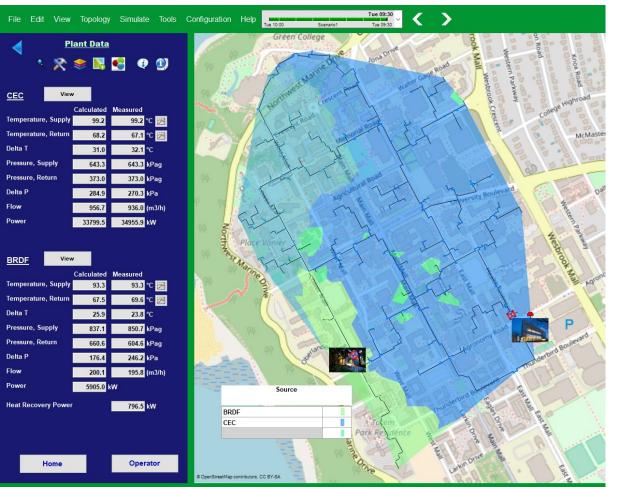
### **Optimization & Efficiency**

- Optimize pressure, temperature, flow, velocity
- Identify areas of high pressure/heat loss in the network
- Load forecasting and Demand analysis
- Supply and return pressure and temp optimization
- Electricity and thermal optimization

### **Operation Monitoring**

- Detect abnormalities in operation
- Measurement & meter validation
- Track KPIs such as system thermal losses etc




# **"EYES ON OUR SYSTEM" AND ENGAGING WITH OUR COMMUNITY**

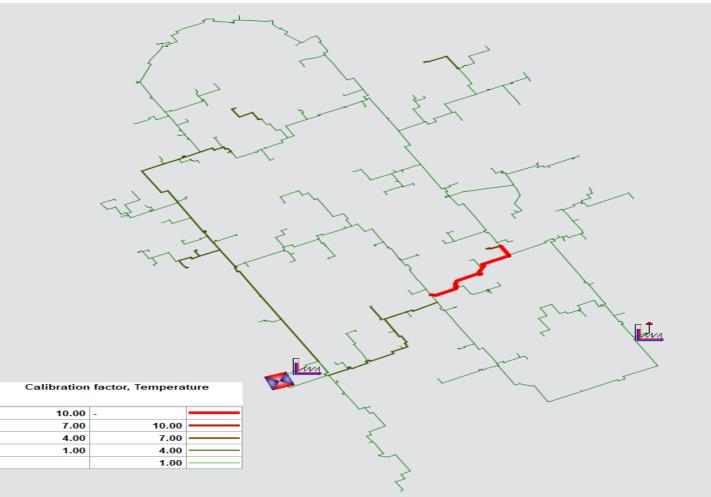
- Telling UBC Steam to Hot Water and Bioenergy Plant story
- Shows UBC's DES in real time
- Shows amount of energy supply with natural gas & biomass





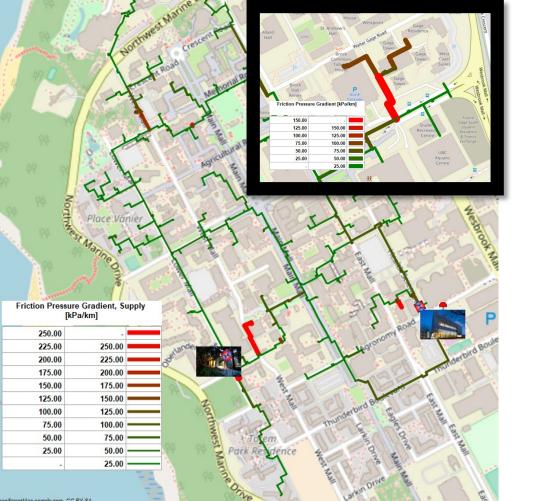
## **VISUALIZATION & DASHBOARDS: TWO PLANTS IN OPERATION**

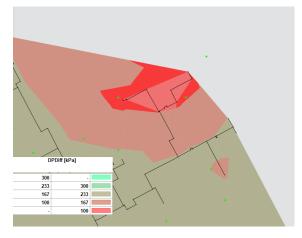




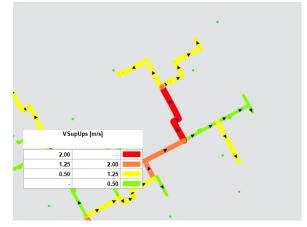

## SINGLE PLANT IN OPERATION



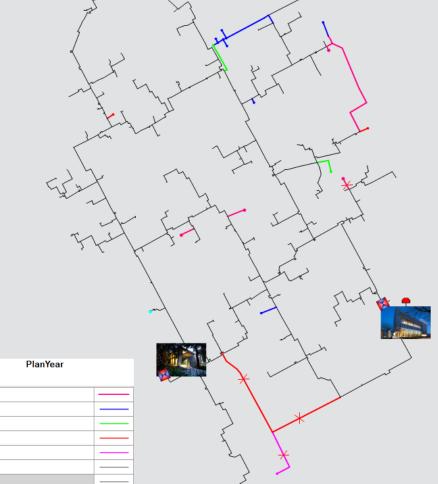




## **TEMPERATURE MODE**






## IDENTIFYING BOTTLENECKS

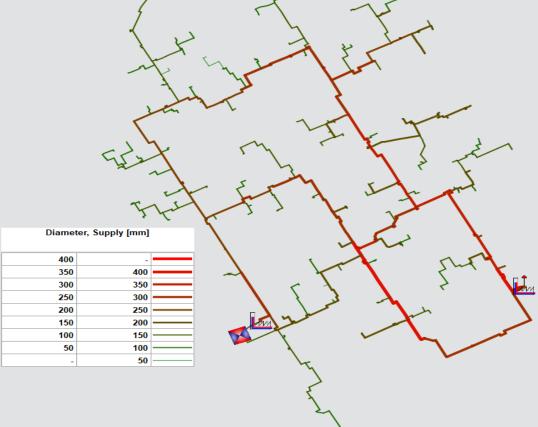






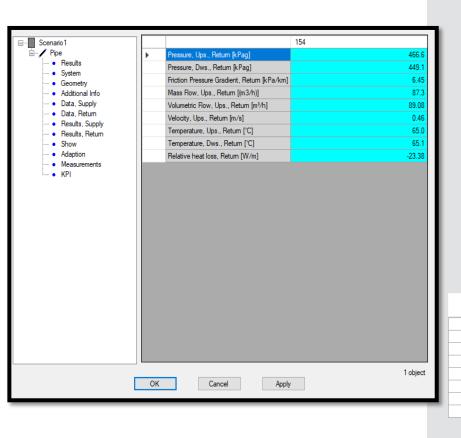


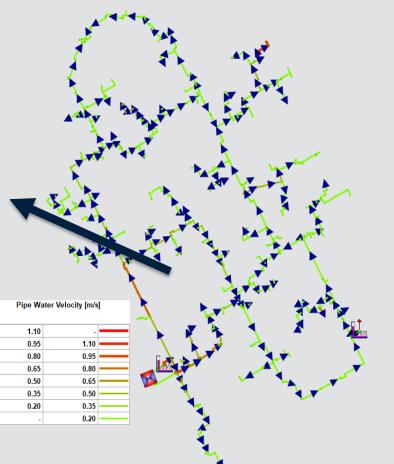

## **FUTURE EXPANSION & PIPE SIZING MODELING**






|   |                                      | • | 500     | 399     | 387      | 68     |
|---|--------------------------------------|---|---------|---------|----------|--------|
| • | Pipe Type, Return                    |   | D70.3   | D82.5   | D160.3   | D160.3 |
|   | Pipe Length, Return [m]              |   | 1.4     | 1.9     | 12.7     | 9      |
|   | Diameter, Return [mm]                |   | 70.3000 | 82.5000 | 160.3000 | 160.30 |
|   | Roughness, Return [mm]               |   | 0.05    | 0.05    | 0.05     | 0.     |
|   | Single Loss, Return                  |   | 0       | 0       | 0        |        |
|   | Heat Transfer Coeff., Return [W/m/K] |   | 0.26    | 0.27    | 0.39     | 0.     |
|   | Pipe in return does not exists       |   |         |         |          |        |
|   | Pressure Drop Correction, Return     |   | 1       | 1       | 1        |        |
|   | Temperature Drop Correction, Return  |   | 1       | 1       | 1        |        |
|   | Auto dimension return                |   |         |         |          |        |


## PIPE VOLUME, THERMAL STORAGE, &


## **EXPANSION TANK CALCULATIONS**





### **PIPE LINE VELOCITY & WATER FLOW DIRECTION**







## **SAMPLE BUILDING & PLANT DATA**

| Scenario 1                   |                             |                                     | NO_PULPR   |    |       |          |   |                                     |   |        |           |
|------------------------------|-----------------------------|-------------------------------------|------------|----|-------|----------|---|-------------------------------------|---|--------|-----------|
| Node                         | •                           | dP [kPa]                            | _          |    | 12.16 |          |   |                                     |   |        |           |
| Results                      | -                           | Pressure, Supply [kPag]             |            |    | 343.6 |          |   |                                     |   |        |           |
| Control     Geometry         |                             | Pressure, Return [kPag]             |            |    | 331.5 |          |   |                                     |   |        |           |
| Geometry     Additional Info |                             | Temperature, Supply, Consumer [°C]  |            |    | 78.1  |          |   |                                     | • | CEC    | BRDF      |
| Update                       |                             | Temperature, Return, Consumer [°C]  |            |    | 52.6  |          | • | dP [kPa]                            |   | 14.22  |           |
| Zone Definitions             |                             | dT [°C]                             |            |    | 25.58 |          |   | dT [°C]                             |   | 0.00   | 24.13     |
| • Show                       |                             | Temperature, Supply [°C]            |            |    | 78.1  |          |   | Power [kW]                          |   | 0.00   | 4530.85   |
| Measurements     KPI         |                             | Temperature, Return [°C]            |            |    | 52.6  |          |   | Pressure, Return [kPag]             |   | 239.9  | 455.4     |
| • System                     |                             | Volumetric Flow [m <sup>3</sup> /h] |            |    | 0.31  |          |   | Production Units                    |   |        |           |
|                              |                             | Load [kW]                           |            |    | 8.91  | 8        |   | Pressure, Supply [kPag]             |   | 254.1  | 494.2     |
|                              |                             | Mass Flow [(m3/h)]                  |            |    | 0.3   |          |   | Mass Flow [(m3/h)]                  |   | 0.0    | 161.2     |
|                              | L                           |                                     | BRDF: 1.00 |    | 0.5   |          |   | Actual Control Node                 |   | NO_754 |           |
|                              |                             | dT Consumer [°C]                    | DRDF. 1.00 |    | 25.64 | ns       |   | Volumetric Flow [m <sup>3</sup> /h] |   | 0.00   | 164.77    |
|                              |                             | Transport Time [min]                |            |    | 14.87 |          |   | Temperature, Supply, Plant [°C]     |   | 8.0    | 91.8      |
|                              |                             | rransport nine [min]                |            | 0. | +4.07 |          |   | Energy Costs [CU/s]                 |   | 0.00   | 0.00      |
|                              |                             |                                     |            |    |       | rol Node |   | Temperature, Return, Plant [°C]     |   | 8.0    | 67.7      |
|                              | 1 object<br>OK Cancel Apply |                                     | ntroid     |    |       |          |   |                                     |   |        |           |
|                              |                             |                                     |            |    |       | 0        | K | Cancel Apply                        |   |        | 2 objects |



## **EXAMPLES OF USE**

- 1. What-If scenarios of plant capacity from 2019-2025 including DT impact,
- 2. What-If scenarios of Max and Min demand (Tsup = 75 C),
- 3. What-If scenarios of pumping requirements for adding the BDRF 12 MWt plant,
- 4. What-If scenarios of use of booster pump,
- 5. What-If scenarios of use of control valves,
- 6. Initial assessment of plant supply temperature and pumping pressures.
- 7. Thermal storage
- 8. Early stages of modeling potential district cooling system nodes







### **LESSON LEARN/CHALLENGES**

- Have a system like Termis to aid original design of the system to identify future scenarios and bottle necks.
- Suggest to have model during design stages of DES to use the offline model right away to check consultants work during implementation of new system
- Dedicated resources for daily check-in to ensure a healthy system.
- People communication is important: Receive plans, potential system upgrades, communication with IT (ie server upgrade = lost data)
- High level buy in





## **CONCLUSIONS AND NEXT STEPS**

UBC is monitoring and managing the \$88 million energy transformation investment:

- Improving planning, design, operational conditions by Dynamic Live Real-Time modeling
  - Real capacity and capability versus design
  - Improving / maintaining dT at a high level
  - Dispatch strategy to ensure low dP to minimize pumping
  - Management of piping losses, identify system bottlenecks
  - Measurements; accuracy watch-dog and location
  - Managing campus building expansions by applying loads from existing Building System
  - Managing valves and by-passes
  - Visual overview



## **CONCLUSIONS AND NEXT STEPS**

UBC is monitoring and managing the \$88 million energy transformation investment:

Next steps 2020-21:

#### Phase 6:

Enable management, operational, and maintenance staff to use the Termis System Thin Client HMI (View Only) as well as tablet and smartphone devices.

#### Phase 7:

Study of optimization and efficiency opportunities of dynamic supply pressure and supply temperature reset in real-time modeling advisory mode. In addition study the benefits and savings of load forecasting based production scheduling.

#### Phase 8: Detential implementation of

Potential implementation of the recommendations of Phase 7



## Thank you! Questions?





#### **Thomas Lund-Hansen, REO**

#### Joshua Wauthy, UBC



#### THE UNIVERSITY OF BRITISH COLUMBIA