

Campus Energy 2023: Case Study – Western Michigan University

Robert Bouwens February 2023, Revision 1.0

Topics for Discussion

Combined Heat and Power for Campus and Hospital

Western Michigan University:

- Located in Kalamazoo, Michigan
- 16,643 students, 864 full-time academic staff
- 1 of 133 public institutions classified as high research university¹
- Top 100 in the nation for six graduate programs²
- Excellence in Diversity Award³
- 100+ study abroad programs in 40 countries
- WMU Broncos compete in NCAA Division I Athletics

Kalamazoo Psychiatric Hospital

 201 staffed bed facility, opened in 1859, and operated by Michigan Department of Health and Human Services

Western Michigan University

Kalamazoo Psychiatric Hospital

110

- Fuel input:
 - 275 psig high pressure natural gas, purchased from Consumers Energy
- Main operating hardware (excluding black-start and backup systems):
 - Two Siemens Energy SGT-A05 5+ MW gas turbines
 - One 900 kW steam turbine
 - Three boilers and two heat recovery steam generators
- Output:
 - Electricity is distributed to campus at both 13.8 kV and 2.4 kV, and to the Kalamazoo Psychiatric Hospital at 2.4 kV.
 - Steam is generated at 200 psig, 480 °F

Michigan State Energy Profile

2021 Net Annual Electricity Generation by Fuel Type

Conventional Generation Combined Heat and Power (CHP) Power Station Fuel (U.S. Average Fossil Fuel) 36 Units Electricity Electricity ower Pla Electricity Combined Heat and **CHP Fuel** Power (CHP) (Gas) Annual 155 Units Fuel Consumption 1 MW Natural Gas **100 Units Fuel Reciprocating Engine** 44 Units Heat Heat Heat **Boiler Fuel** (Gas) 52% Efficient 80% Efficient TOTAL FUEL EFFICIENCY https://www.epa.gov/chp

- Conventional heat and power generation: 155 units of energy inputs to produce 80 units of useable output (efficiency of ~50%)
- **Combined** heat and power generation: 100 units of energy inputs to produce the 80 units of usable output (efficiency of ~80%)
- Simple-cycle gas turbine follows the Brayton Cycle and makes no use of waste heat (electrical efficiency of ~30%)

Conventional Generation vs. CHP: Overall Efficiency

2. Decision – New SGT-A05 KB7HE

+ Pro

- 1. All parts have zero hours.
- 2. One-year parts and labor warranty.
- 3. HE engine is more efficient than KB7.
- 4. More reliable; 25 years of product improvement.
- 5. Demonstratable lower cost of ownership; lower parts cost.
- 6. 50% to 100% turndown at 25ppm NO_x and 50ppm CO.
- 7. Upgradeable to ultra-low emissions technology (15ppm NO_x and 25ppm CO; with 50% to 100% turndown.)
- 8. Sets WMU foundation for next 20+ years.

- Con

- 1. HE engine will require some berth modifications.
- 2. Potential need for emissions re-permitting¹.
- 3. (Potentially) higher capital investment.

¹ It was soon determined that per Michigan Department of Environment, Great Lakes, and Energy (EGLE), repermitting would not be required since the SGT-A05 KB7HE is a variant of the KB7 engine.

Sets foundation

for future partnership between Siemens Energy and WMU for upcoming "Green

Initiatives".

3. SGT-A05HE Performance

Other SGT-A05 Modernization Enhancements

- 1. Compressor Module
 - Improved air sealing: higher performance and efficiency.
 - Redesigned vanes: improves reliability and resiliency.
 - Hybrid ceramic bearings: improves reliability and resiliency.
- 2. Combustion Module
 - DLE combustion liners are upgradable to ULE liners offering:
 - Improved emissions: <15 ppm NOx and <25 ppm CO @ 50 to 100% load.
 - Longer life: improved channel cooling lowers combustion liner temperature
- 3. Turbine Module
 - Larger, more powerful and efficient turbine module.
 - Air cooled, directional solidified first stage blades: improves reliability and resiliency.
- 4. Future Enhancements
 - SGT-A05 engine will be future upgradeable to 100% H₂ burning capable.

Restricted © Siemens Energy, 2023 10

Power Generation: KB7 versus KB7HE

Heat Generation: KB7 versus KB7HE

Mass Flow vs. Ambient Temperature

Restricted © Siemens Energy, 2023 12

Heat Generation: KB7 versus KB7HE

Restricted © Siemens Energy, 2023 13

Fuel Burn: KB7 versus KB7HE

NOM. HE, KB7, WMU UNITS FUEL BURN COMPARE

<u>Power increases</u> with HE over existing KB7 equipment but is limited by existing gearbox and AC generator.

Total enthalpy (as measure of steam heating energy) of KB7HE is <u>equal to or</u> <u>exceeds</u> heat output of existing KB7.

The fuel consumption of new, higher efficiency, KB7 HE is the <u>same or lower fuel</u> consumption than current ASP-1963 and ASP-1966.

Siemens Energy is a registered trademark licensed by Siemens AG.

4. Commercial Operational Benefit: KB7HE

imple average of high and low emperatures for each month.		w.	Maximum power is limited by external gearbox and AC generator.			=min(HE, Max) - WMU					
Month	Ambient, F	Ambient, C	WMU, kW	HE, kW	Max.	Benefit, kWh	Days	Hours/Mo	kWh/Mo	\$/kWh	\$/Mo
January	24.3	-4.3	5,415	6,185	5,800	385	31	744	286,696	\$0.10	\$28,670
February	26.9	-2.9	5,380	6,127	5,800	420	28	672	282,528	\$0.10	\$28,253
March	36.7	2.6	5,244	5 <mark>,9</mark> 05	5,800	556	31	744	413,631	\$0.10	\$41,363
April	49.3	9.6	5,071	5,623	5,800	552	30	720	397,094	\$0.10	\$39,709
May	59.8	15.4	4,927	5,386	5,800	460	31	744	341,905	\$0.10	\$34,191
June	68.9	20.5	4,802	5,182	5,800	380	30	720	273,487	\$0.10	\$27,349
July	72.6	22.6	4,750	5 <mark>,</mark> 097	5,800	347	31	744	258,165	\$0.10	\$25,817
August	70.9	21.6	4,774	5,136	5,800	362	31	744	269,570	\$0.10	\$26,957
September	63.4	17.4	4,877	5,305	5,800	428	30	720	308,172	\$0.10	\$30,817
October	51.5	10.8	5,041	5,573	5,800	532	31	744	395,994	\$0.10	\$39,599
November	41.2	5.1	5,182	5,804	5,800	618	30	720	444,867	\$0.10	\$44,487
December	29.3	-1.5	5,346	6,072	5,800	454	31	744	337,879	\$0.10	\$33,788
							365	8,760			\$400,999

Projected incremental income per year per unit

Siemens Energy is a registered trademark licensed by Siemens AG.

Restricted © Siemens Energy, 2023 16

5. Installation Complete

SGT-A05 KB7HE gas turbine installed in existing berth.

New compressor bleed air silencer and exhaust for CO turndown.

5. Installation Complete

Confirmation of Performance Projections

KB7 vs. KB7HE, Actual

- Actual performance correlates very well with predicted performance.
- Small variations seen associated with "warmer than expected" or "cooler than expected" months.
- WMU now selling electricity back to grid at prevailing rates and seeing significant electricity credits.
- WMU's CHP electricity is generated at higher efficiency and lower carbon footprint than state of Michigan.

Contact

Robert Bouwens

Head of Sales and Aftermarket, SGT-A05

Phone: +1 (317) 220 9304 Email: robert.bouwens@siemens-energy.com

siemens-energy.com

Siemens Energy is a registered trademark licensed by Siemens AG.