How the Changing Utility Market Impacted Expansion of a 15-year-old Chiller Plant

INCREASED CAPACITY AND INCREASED SAVINGS:
BACKGROUND

PROJECT SCOPE

• ISU campus has had cogeneration capabilities for more than 125 years and has utilized steam turbine chillers for more than 50 years

• In 2003, NV5 teamed with ISU to design and construct a satellite chiller plant that housed one 4,000-ton steam turbine chiller with provisions to install an identical chiller

• By 2016 additional chiller tonnage was required to support a fast-growing campus
BACKGROUND

CHILLER INVENTORY

- In 2016 ISU had two chiller plants:
 - Power Plant
 - Three 5,000-ton Steam Turbine Chillers
 - One 2,000-ton Electric Chiller
 - Field-erected Cooling Towers
 - No footprint for additional tonnage
 - Plant also houses
 - Two coal and three gas boilers
 - Four steam turbine generators
 - North Chiller Plant
 - One 4,000-ton Steam Turbine Chiller
 - Field-erected Cooling Tower
 - Footprint designed for an Identical Steam Turbine Chiller
BACKGROUND

DISTRIBUTION SYSTEM

• Plants are tied together via an underground chilled water distribution system
• Serves approximately 85 buildings on campus
BACKGROUND

CAMPUS GROWTH PLAN

Chilled Water Load Projections

Assumptions:
1. 1% annual load growth plus known new buildings
2. 6000 tons of new capacity available summer 2028

- Actual Peak
- Projected Peak Load
- Production Capacity
- Firm Capacity
WHOLESALE ELECTRICITY

- ISU has been a wholesale electric customer since 1993
- Since 2005, ISU has purchased electricity from the Midcontinent Independent System Operator (MISO)
- Electricity is purchased on the MISO a day ahead or real-time market with no demand charges
 - Average power price (delivered to campus) for the past three years was $0.0164 per kilowatt-hour
 - Favorable electric rates made utilizing electric chillers for chilled water generation more economical than operating in cogeneration mode
PROJECT DISCUSSION

ORIGINAL CHILLER CAPACITY GOALS

• Add approximately 6,000 tons of electric-driven chiller capacity in North Plant
• Utilize the footprint originally allotted for 4,000 tons of steam-turbine chiller capacity
• Cover projected campus load growth through 2025
PROJECT DISCUSSION

PROJECT STUDY PHASE (FINANCIALS)

• Reviewed time-stamped campus chilled water trend data from previous three years
• NV5 found there was an opportunity to base-load electric variable speed drive (VSD) chillers year-round at an annual savings of approximately $2M versus running equivalent load from the steam-turbine chillers
• Electric VSD chillers would provide a substantial cost savings in winter months versus a constant speed electric chiller or steam turbine chiller
• Fitting additional electric chiller tonnage into the North Plant would further increase savings
PROJECT STUDY PHASE (CHILLER CONFIGURATION OPTIONS)

• Series-Counterflow Benefits
 – Increased energy efficiency by approximately 10-12% by reducing chiller lift (approximated by difference between leaving condenser water and leaving evaporator water temperatures)

• Parallel Benefits
 – Able to take one chiller offline without taking down the other
 – Able to reduce pressure drop at instances of low delta T

• Both!
PROJECT DESIGN

- Two variable speed chillers, totaling 7,000 tons, were specified and procured by ISU and NV5
- Chillers piped in series-counterflow and parallel arrangement
- Electric-actuated control valves included for automatic changeover
- Chillers and VSDs located on upper level chiller floor
- Pumps located on lower level
- Field-erected cooling tower cells located outside on-grade
- Integrate control of new electric chillers to the main power plant control system
DESIGN CHALLENGES (CAMPUS CHILLED WATER LOOP)

• Completing chilled water loop through an existing campus to support additional chilled water production and distribution
DESIGN/CONSTRUCTION CHALLENGES AND RESOLUTIONS

DESIGN CHALLENGES (POWER)

• North Plant was not set up for electric chillers so we routed a 13.8 kV power feed approximately 1/2 mile through the campus

• These two chillers were a substantial load to campus so we elected to utilize active front-end variable frequency drives to mitigate power quality issues
DESIGN CHALLENGES (PIPING INSIDE NORTH PLANT)

- Significant amount of piping and structural support on lower level. NV5 designed the piping layout and structural supports using 3D software to ensure avoidance of pipe clashes.

- Installing contractor utilized our modeled system and conducted their own 3D laser scan. Majority of the large diameter piping was prefabricated using the 3D model and laser scan.

- Communication between NV5 and installing contractor on routing of large piping was done early in construction phase by utilizing a Navisworks 3D file.
 - Avoided large change orders
 - Avoided project delays
DESIGN CHALLENGES (HVAC)

- VSD cabinets
 - Installed on the main chiller floor (ventilation-only cooling) since the existing electrical room did not have space.
 - Conditioned air provided via a supply air duct routed through the floor between the two cabinets.
- Chillers
 - Original ventilation system designed for two (2) steam turbine chillers
 - Upgraded ventilation to handle increased heat generation from open-drive electric motors.
DESIGN CHALLENGES (STRUCTURAL/SHORING/CHILLER INSTALLATION)

- Chiller structural platform increased in size
- Replacement of existing bridge crane
- Each chiller was shipped and rigged in three major parts
 - Evaporator Shell
 - Condenser Shell
 - Compressor and Motor
- Significant shoring required on lower level
DESIGN/CONSTRUCTION CHALLENGES AND RESOLUTIONS

DESIGN CHALLENGES (SHORING)
RESULTS

- Chillers were brought online July 2018
- Chillers have already demonstrated substantial operational savings, utility resiliency, and operational flexibility
- Estimates from this winter are a 60% savings in energy versus using the existing 2,000-ton constant speed electric chiller
- Chiller performance rates observed down to 0.2 KW/ton
QUESTIONS?

JEFFREY WITT, PE
Director, Utility Services
Iowa State University
jwitt@iastate.edu
515.294.8286

MATT WOLF, PE
Mechanical Engineer
NV5
Matt.Wolf@NV5.com
651.634.7232