Scary Noise?

District Cooling & CHP Infrastructure in Sensitive Campus Locations

Jane Weinzapfel, FAIA, Leers Weinzapfel Associates
Winne Stopps, AIA, LEED BD+C, Leers Weinzapfel Associates
James D. Barnes, PE, INCE-USA Fellow, ACENTECH
Problem:
How can we make District Energy Noise less Scary?
Key Points

• Early in project, identify and address noise concerns with noise professional.

• 3 locations for noise control.
 • Interior:
 • Equipment choice.
 • Equipment lagging and attenuators.
 • Absorption in plant.
 • Protect workers and comply with OSHA.
 • reduce overall plant as noise source.
 • Envelope: block or mitigate sound at the building walls/roof/openings.
 • Exterior: outside equipment choice, local barriers and enclosures.

• Develop, review, and update noise control design throughout entire project.
Energy Plants Are Not "Backyard" or "Elsewhere" Anymore

North Chiller Plant
Plants + Their Noises!
Case Studies: UMA Chiller Plant, OU CHW Plant, Tufts CEP

CHILLED WATER
Advantage: Less air required, so roof ventilation can be used.
Challenge: Exterior Cooling Tower noise.

COMBUSTION/TRI-GEN
Advantage: Interior combustion equipment.
Challenges: Large combustion air volume requires large openings in building walls. Exterior Cooling Tower noise.

UMass Amherst North Chiller Plant (UMA Chiller Plant)
Ohio University Chilled Water Plant (OU CHW Plant)
Tufts University Central Energy Plant (Tufts CEP)
Project Steps

SD
• Requirements & Goals
• Baseline Community Survey
• Preliminary Design Recs & Specs
• Community Engagement

DD/CD
• Refine Recs & Specs

Bid
• Review & Update Estimates and Recs

CA & Commissioning
• Evaluate Equipment & Building
Noise Goals

- Community
- Interior/Workplace
- Regulations (OSHA, State, local)
- Owner’s Policy
- Existing Conditions
- Good Practice
- Include Margin (3 to 5 dBA)
Tufts Sound Goals
Case Study: Tufts CEP

Community

- 40 dBA nighttime sound levels outside Burget Avenue residences from continuous plant sources: 43 dBA goal – 3 dBA margin.

Workplace

- 55 – 60 dBA: Control and meeting rooms.
- 80 – 90 dBA: General plant floor areas.
- 95 – 105 dBA*: High noise equipment in separate room or plant area.

* 100 dBA is the desired maximum sound level in high noise equipment spaces, however the maximum sound levels in the Reciprocating Engine Room were expected to be about 105 dBA based on vendor and in-house data.
Plant Equipment Sound Power Levels, dBC and dBA

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Chiller Plant</th>
<th>Boiler Plant</th>
<th>Cogen Plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling Tower</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chiller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recip. Engine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas Turbine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas Compressor</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sound Power Levels (dBC & dBA)

<table>
<thead>
<tr>
<th>Level</th>
<th>dBC</th>
<th>dBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **dBC**: weighted toward lower frequencies
- **dBA**: weighted toward higher frequencies, best reflects hearing
Noise Mitigation: Equipment

- 85 dBA or less at 3-ft. for most indoor equipment.
- High-efficiency motors and transformers.
- Equipment with vendor-supplied enclosure.
- Well-matched ventilation fans & mufflers.
- Low-noise cooling tower.
Cooling Towers – Special Attention (Fan, VFD)

• Low-noise design fan operating at reduced tip speed rather than narrow chord blade fan at 12,000 fpm.
• VFD or 2-speed drive motors if have excess nighttime tower capacity.
Equipment Acoustic Recommendations

• Requirements & goals with margin.
• Cooling tower and other major equipment early.
• Push vendors for reduced-noise options.
• Timely requests and updates.
• “Back-pocket” mitigation options.
• Clear Architectural & Mechanical Specifications
Noise Mitigation: Building

Interior
• Sound Absorption
• Sound Blocking
 • Wall
 • Floor

Exterior Envelope
• Roof Parapet
• Sound Barrier
• Ventilation Strategies
• Maximize Wall Sound Blocking
Interior Sound Absorption
Case Study: Tufts CEP

Acoustic Deck Ceiling
Acoustic Deck Diagram
Corrugated Aluminum Wall Panel
Interior Sound Blocking

Case Study: Tufts CEP

- Sound Barrier, CMU & Concrete Walls
- Sound Absorption, Corrugated Aluminum Wall Panel
- Sound Barrier, Acoustic Glass

Plan of Reciprocating Engine Room

Acoustic Block
Exterior Envelope Strategies
Case Studies: UMA Chiller Plant, OU CHW Plant, Tufts CEP

- Roof Parapet
- Sound Barrier
- Reduce Wall Openings, Use Rooftop Ventilation
- Areaway Configuration
- Sound Attenuators/Silencers
- Maximize Wall Sound Blocking
Exterior Envelope Strategies
Case Studies: UMA Chiller Plant, OU CHW Plant

UMA Chiller Plant
- Parapet Wall
- Acoustic Glass
- Chiller

OU CHW Plant
- Sound Wall
- Screen Wall
- Parapet
- Chiller
- Acoustic Glass

- Height of Tallest Apartment Building (125’ away) set height of sound wall
- 50’
- 100’

* Major Sound Source
Exterior Envelope Strategies
Case Study: Tufts CEP

- Roof Parapet
- Sound Barrier
- Sound Attenuators
- Areaway Configuration
Sound barriers
Tufts – “flying barrier”

Exterior

Interior
Maximize Sound Blocking

3/8” Laminated Glass:
2 Layers 3/16” Heat
Strengthened Glass With
0.060” Thick PVB Interlayer

1/2” Air Space

1/4” Tempered or Heat
Strengthened Clear Glass

Acoustic Glazing
STC = 40
Value Engineering: Tradeoffs In Noise Control Design

<table>
<thead>
<tr>
<th>Noisier Interior Environment</th>
<th>VS</th>
<th>Sound Absorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Performance Attenuators</td>
<td>VS</td>
<td>High Performance Attenuators</td>
</tr>
<tr>
<td>Smallest cooling towers (High Speed Fans)</td>
<td>VS</td>
<td>less risk of community noise complaints.</td>
</tr>
<tr>
<td>Scary Noise</td>
<td>\rightarrow</td>
<td>Less Scary Noise</td>
</tr>
</tbody>
</table>
Post-Occupancy Visits and Measurements with limited equipment operating:

Tufts CEP interior sound (10/8/2019)

Goal

55-60 • 58 dBA: Conference Rm (door closed)
55-60 • 56 to 60 dBA: Control Rm (door closed)
80-90 • 67 to 78 dBA: Boiler Hall
80-90 • 74 to 82 dBA: Chiller Hall
95-105 • 100 to 105 dBA: Recip. Engine Rm
HOW DID WE DO?

Case Study: UMA Chiller Plant

Post-Occupancy Visits and Measurements with limited equipment operating:

UMA Chiller Plant Sound (10/22/2019)

Goal
55-60
• 63 dBA Control Room (door closed, HVAC sound)

80-90
• 69 to 77 dBA: Chiller hall

No Goal
• 57 dBA 150 ft from cooling tower - waterfall sounds
What worked?

- Tufts CEP: Noise Goals met with equipment choices and plant construction.
- UMA Chiller Plant: Noise Goals generally met with equipment choices and plant construction, except for HVAC sound in control room.

What would we do differently?

- Choose very quiet HVAC equipment for control rooms and meeting rooms.
- In future energy plants, if waterfall noise is a concern in the community, add sound barrier in addition to parapet.
Questions?
Thank You!

Jane Weinzapfel, FAIA
Leers Weinzapfel Associates
p. 617.423.5711
e. jhweinzapfel
@lwa-architects.com

Winne Stopps, AIA, LEED BD+C
Leers Weinzapfel Associates
p. 617.423.5711
e. wastopps
@lwa-architects.com

James D. Barnes
PE, INCE-USA Fellow
ACENETECH
p. 617.499.8018
e. jbarnes@acentech.com