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Introduction

e Although a Ground Source Heat Pump (GSHP) system has the potential for achieving a
high system efficiency, the high initial cost is a major barrier for the broad application of
GSHP systems in the market.

» Additional source(s) can be used within a heat pump system along with the ground, such
as solar thermal, ambient air, water (lake, river, etc.). A heat pump system with more
than one source is known as a multi-source heat pump system.

e Recent studies [1][2][3] indicate that the size of the underground loop of a conventional
GSHP system can be reduced by about half without a reduction of system efficiency if an
additional source is used along with the ground, such as a solar thermal collector or an
air-to-liquid heat exchanger.
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* The use of inexpensive solar thermal collectors or dry fluid coolers instead of
more expensive ground loops contributes to the reduction of the overall system
cost, thus providing a cost-effective way to overcome this barrier of GSHP
systems.

* This presentation introduces an innovative multi-source heat pump system
design for large scale applications, which is lower cost to build (much smaller
ground loop) and use (higher average annual efficiency) compared to standard,
conventional GSHP systems.
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Dual Source System Design Options
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System Design
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System Design
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System Design
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Case Study — Single Family House

To load
T —
\ /
[Ast] v
Mode 1
P: Pump

P: Pump V: Valve _
V: Valve HP: Heat Pump Case2 = Model + Mode?2

ALt | Case3 = Model + Mode2 + Mode3

Loop

Uiloor T Case4d = Model + Mode2 + Mode3 + Moded

HP: Heat Pump

ASL: Air Source
Loop

UL: Underground

Loop

Powering the Future: District Energy/CHP/Microgrids

ASSOCIATION

T PIDEA2021 @SR

Sept. 27-29 | Austin Convention Center | Austin, Texas



TRNSYS Simulation Models

LY

o * ¥ ! ‘ . ,_6 &
‘ » N7 o
__‘ - . Weather Data - _— —— At
w Single Family House Diverting Valve (V1) L TRNSYSI8
Weather Data - 4 = 3 )
Single Family House
L 4 »
L > > L =
¥ . ﬁ Pl
> . ——
W-A Heat Pummp (HF) Underground Loop (UL)
4
W =
W-A Heat Pummp (HF) e
7 —o—*-(* {
&

& i
p < S Tnlet Mix Valve (V2)
Underground Loop (UL) [

Control System
Control System ) Dry Cooler (DC)

Case 1 Model Case 2 & 3 Model
_._',‘_’—2)" i é‘

Ground Loop inlet Mix Vatve (v3) [l P
Underground Loop (L) | TRNSYS$18

<

‘Weather Data w
Single Family House

ﬁ 31 | e

W-A Heat Pummp (HP) %A

Diverting Valve (V1)

—— Dry Cooler Inlet Mix Valve (V3)

—a—]
_._4-4
3 ﬁng Valve2 (V4)

Inlet Mix Valve (V2)

Control System , -
J?l DEA2021 ' m INTERNATIONAL

Powering the Future: District Energy/CHP/Microgrids. Dl ST Rl CT EN E. RGY
Sept. 27-29 | Austin Convention Center | Austin, Texas Case 4 MOdel ASSOCI ATION




Simulations in Eight Climate Zones
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Average Heating COPs
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* Higher COPs are
achieved in
hot/warm climates.

* Heating COPs
decrease as the
borehole size is
reduced.

* Lower COPs for Case
4 when collecting
cold, and higher
COPs for heat
collection.
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Average Cooling EERs

* Higher EERs are achieved in
cold climates, and cooling
EERs decrease as the
borehole size is reduced.

* Higher EERs in Cases 2, 3,
and 4 in hot/warm
climates, especially when
shorter borehole lengths
are used.

The charging mode (Mode
4 in Case 4) contributes to
the balance of the ground
temperature between
heating and cooling,
especially in extreme
hot/cold climates, and thus
the changes in cooling EERs
over 20 years for this case
are not significant.
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Max. and Min. Ground Temperatures Over 20 Years

* |n hot climates, the max.

ground temperatures "
decrease as the advanced =
control strategies are used 2w
inCases 2,3,and4,and &
lower min. ground £ il
temperatures were § SRR || |H |H
observed for Case 4, where : 1
cold is collected by using £ T
the dry fluid coolerand  : o ol T
then transferred to the fa i
underground region. F
* For Mode 4 in Case 4, the 5 »
effectiveness of charging E
cold in hot climates is more © |
significant than that of
charging heat in cold e e e e T e T e T e T e
climates.
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Larger Scale System Design
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A Typical Pit Thermal Energy Storage (PTES)
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Multi-Source Thermal Storage Pond
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Underground Thermal Storage with Earth and/or Sand
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Heat Retention for a Partially Insulated Hemisphere
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Lessons Learned

* The use of a dry fluid cooler with advanced control strategies in a GSHP
system contributes to increasing or maintaining the GSHP system’s efficiency
in the long run by balancing the heating and cooling through charging cold or
heat to the ground, respectively.

 Especially, the concept of integrating a dry fluid cooler into a GSHP system
with advanced control strategies is proven to be effective for the studied
house located in hot climates, such as Miami or New Orleans.

* This presentation provides a cost-effective way to design and use a multi-
source heat pump system. It has the potential for a wide and large-scale
application when used in dense urban areas due to its requirement of smaller
ground loop areas.

* A multi-source system as described here for large scale applications can be
lower cost than a conventional ground source system (smaller ground loop)
but also provide higher efficiency (lower electricity use).
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