Duke Energy Emerging Technology Office

Lesson Learned from Duke Energy's Mount Holly Microgrid Test Site

Jason Handley

Director – Smart Grid Emerging Technology & Operations Duke Energy

Copyright © 2017 Duke Energy All rights reserved.

Mount Holly – Videos

Mount Holly Microgrid Components, Cont.

External view of Envision Room

EV Carport with Rooftop Solar PV

Internal view of Envision Room

EV Charging Station Inside Lab

Mount Holly – Home Battery Energy Storage Solutions

Copyright © 2016 Duke Energy All rights reserved.

- 1. Voltage
- 2. Voltage Angle
- 3. Frequency

- #2: Integration of Disparate Assets
 - Successful FAT of equipment doesn't entail system acceptance with DERs
 - Standard product settings might not to be desired configuration
 - New control schemes within microgrid will need further refinement

Copyright © 2017 Duke Energy All rights reserved.

- #3: Field Commissioning Coordination
 - Variety of assets with different time lines on drawings and installation
 - Different connectivity diagrams and associated skillsets by voltage levels
 - Power delivery engineers handle drawings for 12KV primary
 - Electricians handle 277/480V and 120/208/240V secondary levels
 - IT staff used for 12/24/48VDC wiring of telecommunications & UPS.

- #4: Understanding of Load Diversity
 - Minimum, Maximum, and Average Loads
 - Proper distributed generation / storage mix
 - Optimal DER capacity ratings for the desired microgrid objective
- #5: Supplemental Engineering Studies
 - DER's connected to 12.47kV system and 480/277V Y-grounded system.
 - Microgrid Loads are 120/240V and 277/480V
 - Most power systems planning tools don't model secondary side
 - Steady-state modeling: Only grid-connected mode
 - Short-circuit studies: Fault transients, trip settings

- #6: Safety DC Arc Flash Analysis
 - BESS and PV systems rarely come with DC ARC-FLASH analysis
 - This analysis is a MUST before the any commissioning work has begun
 - NFPA70E for calculations

Copyright © 2017 Duke Energy All rights reserved.

- #6: Safety BESS Design
- Some battery energy storage systems come in open racks (i.e. no doors that cover the batteries)
- The distance between the battery racks sometimes is not enough for a person working on it to be 19 inches away from both sides

- #8: Inverter Transformers
 - Y-grounded-Y(floating) vs. Y-grounded-Delta
 - AC voltage levels not common (315VAC, 347VAC, 380VAC), which requires unique transformers

Copyright $^{\odot}$ 2017 Duke Energy and T&D World. All rights reserved.

- #9: Grounding Considerations for Protection
 - Grid-Connected mode vs. Island-mode Transformer Configurations
 - Yg Delta Transformer Grounding Bank vs. Zig-Zag Transformer

Copyright © 2017 Duke Energy and T&D World. All rights reserved.

- #10: Auxiliary Transformer
 - 25kVA 347V Y(Floating) 480VAC Delta Aux. Transformer
 - 75kVA 12.47kV 120/240VAC Aux. Transformer

Copyright $^{\odot}$ 2017 Duke Energy and T&D World. All rights reserved.

• #11: Relay Settings - 27/59/81 (Grounding Bank Energized)

- #12: Battery Challenges
 - Low-inertia microgrids are a function of Battery System's reliability
 - Thermal management is most important aspect of Li-lon batteries
 - HVAC system is the "Achilles Heal" of battery storage systems
 - Auxiliary power can be 10-20% of battery rating (HVAC, fire suppression system, controls, lighting, etc...)
- #13: Backup Power
 - Three common solutions:
 - Connect the DER to the same feeder as the main feed
 - Run a generator
 - Internal UPS

- #14: Battery Controller
 - CanBus (internal) & Modbus (battery to inverter)
 - Challenge user only receives the battery data from inverter, which might be limited
 - Solution battery controller that can speak to two masters (inverter for control, and head-end system for asset health monitoring)
 - Typical connection is Ethernet port
 - Change it to Fiber/Ethernet switch and ensure that it is on UPS
 - Internal battery health condition monitor typically does not exist
 - Currently working on defining of what this monitor functionality should be
 - Two approaches: traffic light vs. probability of failure

- #15: Backfeed Restrictions
 - Interconnection process might take a long time and the interconnection agreement might not allow DER export onto grid

Copyright © 2017 Duke Energy and T&D World. All rights reserved.

• #16: Net-0 vs. Battery SOC Operating Mode

сорунуни « 2017 рике спенуу ани тар world. Ан нунку тезегуей.

• #17: Seamless Microgrid Transition

Copyright © 2017 Duke Energy and T&D World. All rights reserved.

Mount Holly – Videos Islanding

5-TON 0.000 0.00 10.00 HE 0.0 % 101.0 40 6 🛤 🔹 😡 📑 🗖 10 - P at 10 1000

Mount Holly – Videos

Grid Re-connect

- #18: Seamless Microgrid Transition: Why does it work?
- 1. Generation/load ratio is large
- 2. Load composition and inertia are constant
- 3. We intentionally switch inverter operational mode when the microgrid islands
- 4. The grid source is very strong and constant
- 5. Advanced inverter that is tuned properly

Note: more diverse set of loads with varying load composition and inertia might present a closed loop tuning issue where the system time constant changes and therefore gov/exc/inverter tuning must adapt.

OpenFMB use-cases at Rankin/Mount Holly Sites

- Microgrid Management (2015)
 - Circuit Segment Optimization
 - Unscheduled Islanding Transition
 - Grid-to-Island Reconnection
- DER Circuit Segment Management (2016)
 - Primary Scenario: Voltage, Frequency, Power Factor support
 - DER Point of Interconnection (POI) Coordination
 - Point of Common Coupling (PCC) Coordination with Microgrid Use-cases
 - Secondary Extensions:
 - Solar Smoothing: Battery Optimization
 - Volt-Var Management: Power Factor Optimization
 - Peak Demand: Shaving/Shifting
 - Tertiary Extensions:
 - Distribution Transfer-Trip
 - Anti-Islanding: Inadvertent Island Detection

OpenFMB Operation: Federated Deterministic Exchanges

Next Steps – Battery Integration with PV Inverter

Copyright © 2017 Duke Energy Corporation and NAESB. All rights reserved.

Thank You!

Jason Handley, P.E. Director – Smart Grid Emerging Technology & Operations Duke Energy

Jason.Handley@duke-energy.com

Copyright © 2017 Duke Energy All rights reserved.