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Mount Holly — Videos
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Mount Holly — Home Battery Energy Storage Solutions
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Microgrid Lessons Learned Con’t

e #2:Integration of Disparate Assets
— Successful FAT of equipment doesn’t entail system acceptance with DERs
— Standard product settings might not to be desired configuration
— New control schemes within microgrid will need further refinement
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Microgrid Lessons Learned Con’t

e #3: Field Commissioning Coordination
— Variety of assets with different time lines on drawings and installation
— Different connectivity diagrams and associated skillsets by voltage levels
 Power delivery engineers handle drawings for 12KV primary
e Electricians handle 277/480V and 120/208/240V secondary levels
e |T staff used for 12/24/48VDC wiring of telecommunications & UPS.
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Microgrid Lessons Learned Con’t
 H#4: Understanding of Load Diversity

— Minimum, Maximum, and Average Loads
— Proper distributed generation / storage mix

— Optimal DER capacity ratings for the desired microgrid objective

e #5:Supplemental Engineering Studies

— DER'’s connected to 12.47kV system and 480/277V Y-grounded
system.

— Microgrid Loads are 120/240V and 277/480V

— Most power systems planning tools don’t model secondary side
e Steady-state modeling: Only grid-connected mode
e Short-circuit studies: Fault transients, trip settings
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Microgrid Lessons Learned Con’t

e H#6: Safety — DC Arc Flash Analysis
— BESS and PV systems rarely come with DC ARC-FLASH analysis

— This analysis is a MUST before the any commissioning work has
begun

— NFPA7O0E for calculations
A\ WARNING

Arc Flash and Shock Hazard
Appropriate PPE Required

Flash Hazard Boundary
—cal/cm2 Flash Hazard at

inches

1, Arc-rated long-sleeve shirt andg pants or arc-rated coverall,
c ateg o ry [ 2. Arcerated face shield with arcerated balaclava or arc flash suit hood,

3, Hard hat,

4, Safety glasses or goggles,
5, Hearing protection,

&, Heavy duty leather gloves,
7. Leather work shoss,

—_VvDC Shock Hazard when cover is removed.
'V Glove Class.
inches Limited Approach.
inches Restricted Approach.
inches  Prohibited Approach.

Location: I D-t-: I
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Microgrid Lessons Learned Con’t
 H#6: Safety — BESS Design

e Some battery energy storage systems come in open racks (i.e. no doors
that cover the batteries)

 The distance between the battery racks sometimes is not enough for a
person working on it to be 19 inches away from both sides
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Microgrid Lessons Learned Con’t

#8: Inverter Transformers

— Y-grounded-Y(floating) vs. Y-grounded-Delta

— AC voltage levels not common (315VAC, 347VAC, 380VAC), which
requires unique transformers

25 kVA
Solar farm Grounding bank 47 VY-480 V Delta
1.2 MW

1000 kVA Battery
Sensors ‘

Delta
OH_UG_CO | ‘ |——| I
/,—/ nf/ i = T Aimng ank

= oLt
] l 240V Solar farm
Delta 120 kW
’ —

e L w |
1000 kVA 125 kVA Battery
12470-480/277 V 480/277-315 V, 250 kW/125 kWh
RIS ~,
O+ 35|
i E 275 kVA
. 480/277-385 V
Substation = 00KV
12470-240/120 V —0 < load

? bank
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Microgrid Lessons Learned Con’t

#9: Grounding Considerations for Protection
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— Grid-Connected mode vs. Island-mode Transformer Configurations
— Yg — Delta Transformer Grounding Bank vs. Zig-Zag Transformer

Solar farm
1.2 MW

25 kVA

: 347 VY-480 V Delta
Grounding bank

L

1000 kVA

480V 12.47 W 12 47 kv Yg-347 VY

Sensors

attery
50 kW/326 kWh

OH_UG_CO

B
E‘l—\ 6
3 ~

LAY

Grounding bank

[HHn

240V Solar farm
Delta 120 kW
E . 3 ~
% e . g Kl < PV
1000 kVA 125 kVA Battery
12470-480/277 V 480/277-315V 250 kW/125 kWh
P ~
@3]l
275 kVA
i E ’ 480/277-385V
75 kVA 500-kW
12470-240/120 V —0 < load
bank

?
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Solar farm
1.2 MW

[5 DUKE
. . , T " ENERGY.
Microgrid Lessons Learned Con’t
e #10: Auxiliary Transformer
— 25kVA 347V Y(Floating) — 480VAC Delta Aux. Transformer
— 75kVA 12.47kV - 120/240VAC Aux. Transformer
— Eli{?: :Vnging Egrll?( kV 12.4?1&0?';?3‘3 E?gtfmr.i{':ﬂé kWh
Sensors . 3 P
_UG_ = 2 |
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[
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500-kW
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bank

?
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Microgrid Lessons Learned Con’t
e #11: Relay Settings - 27/59/81 (Grounding Bank Energized)
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Microgrid Lessons Learned Con’t

e #12: Battery Challenges
— Low-inertia microgrids are a function of Battery System’s reliability
— Thermal management is most important aspect of Li-lon batteries
— HVAC system is the “Achilles Heal” of battery storage systems

— Auxiliary power can be 10-20% of battery rating (HVAC, fire
suppression system, controls, lighting, etc...)

e #13: Backup Power

— Three common solutions:
e Connect the DER to the same feeder as the main feed
* Run a generator
* Internal UPS
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Microgrid Lessons Learned Con’t

e #14: Battery Controller
— CanBus (internal) & Modbus (battery to inverter)

— Challenge — user only receives the battery data from inverter, which
might be limited

— Solution — battery controller that can speak to two masters (inverter for
control, and head-end system for asset health monitoring)

— Typical connection is Ethernet port
— Change it to Fiber/Ethernet switch and ensure that it is on UPS
— Internal battery health condition monitor typically does not exist

— Currently working on defining of what this monitor functionality should
be

— Two approaches: traffic light vs. probability of failure
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Microgrid Lessons Learned Con’t

e #15: Backfeed Restrictions

— Interconnection process might take a long time and the interconnection

agreement might not allow DER export onto grid
Microgrid Operation

100

Battery as the main

Battery charging 0
Battery Max SOC from the grid power source (PV =0) "

ol N A T

- 70
2.0 Battery Min SOC
’ with PV = Microgrid Load
Load bank turned - 60
on at 125kW
PV id load /
= microgrid loa ﬂ <0

Excess used to 7
charge the battery

0 mu‘m-h’;ﬂhll I; | . a0
o rrr—— |

MIRAEY . N
\ N

1.0
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-2.0 0
Time
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Microgrid Lessons Learned Con’t

e #16: Net-0 vs. Battery SOC Operating Mode
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Microgrid Lessons Learned Con’t

#17: Seamless Microgrid Transition
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Voltage [p.u.]

Seamless Microgrid Transition

8 cycles
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Mount Holly — Videos

Islanding
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Mount Holly — Videos
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Microgrid Lessons Learned Con’t

e #18: Seamless Microgrid Transition: Why does it work?

Generation/load ratio is large
Load composition and inertia are constant

We intentionally switch inverter operational mode when
the microgrid islands

4. The grid source is very strong and constant
5. Advanced inverter that is tuned properly

Note: more diverse set of loads with varying load composition
and inertia might present a closed loop tuning issue where the
system time constant changes and therefore gov/exc/inverter

tuning must adapt.
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OpenFMB use-cases at Rankin/Mount Holly Sites
e Microgrid Management (2015)

— Circuit Segment Optimization
— Unscheduled Islanding Transition
— Grid-to-Island Reconnection

e DER Circuit Segment Management (2016)

— Primary Scenario: Voltage, Frequency, Power Factor support
e DER Point of Interconnection (POI) Coordination
e Point of Common Coupling (PCC) Coordination with Microgrid Use-cases

— Secondary Extensions:
e Solar Smoothing: Battery Optimization
e Volt-Var Management: Power Factor Optimization
e Peak Demand: Shaving/Shifting

— Tertiary Extensions:
e Distribution Transfer-Trip
e Anti-Islanding: Inadvertent Island Detection
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OpenFMB Operation: Federated Deterministic Exchanges

~

Periodic Readings - Pub every |
few secs or near-real-time — v
Data-Driven Events — on status oS

change in near-real-time : . :
© Security/Configuration

11/7/2017

PV Battery Manager

Readings

KW: A/B/C

KVAR: A/B/C

V: A/B/C

I: A/B/C

Phase Angle: A/B/C
KWh

TimeStamp I
SOC N

Recloser / Switch Meter . .
Status, Events, Alarms, & Control DER/Microgrid

Trip / Open / Optimizer

TimeStamp Grid Edge Analytics
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Next Steps — Battery Integration with PV Inverter
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Thank You!

Jason Handley, P.E.
Director — Smart Grid Emerging Technology & Operations
Duke Energy

Jason.Handley@duke-energy.com
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