Case Studies in West Coast Community Energy:

Stanford University, UCDSC and the University of Washington

IDEA JUNE 2014: MOVING COMMUNITY ENERGY FORWARD ANNUAL CONFERENCE & TRADE SHOW

Agenda

- Drivers for Community Energy Review
- Case Studies
- Conclusions

- Aging Infrastructure
- Climate Change
- Policy Change
- Campus/Community Growth
- Resiliency

- Aging Infrastructure
- Climate Change
- Policy Change
- Campus/Community Growth
- Resiliency

- Aging Infrastructure
- Climate Change
- Policy Change
- Campus/Community Growth
- Resiliency

UC DAVIS 2009-2010 CLIMATE ACTION PLAN

Stanford University Energy and Climate Plan

> Revised Fabraary 2013 Second Edition

CDAVIS

- Aging Infrastructure
- Climate Change
- Policy Change
- Campus/Community Growth
- Resiliency

- Aging Infrastructure
- Climate Change
- Policy Change
- Campus/Community Growth
- Resiliency

Case Studies

- University of Washington, Seattle, WA
 - South of Pacific Master Infrastructure Review
- UC Davis Sacramento Campus, Sacramento, CA
 - Utilities Master Plan
- Stanford University, Palo Alto, CA
 - Stanford Energy Systems Innovations (SESI)

Climate

- Seattle
 - 85/65 F Cooling
 - 24 F Heating
- Sacramento, CA
 - 100/70 F Cooling
 - 31 F Heating
- Palo Alto, CA
 - 93/67 F Cooling
 - 36 F Heating

NOAA-CIRES/Climate Diagnostics Center

U of Washington South Campus

- Options Studied
 - Business as Usual
 - Distributed Chilled Water Generation
 - Campus Steam Heating
 - Case 1
 - Conventional Central Chiller Plant
 - Maintain Campus Steam Use
 - Case 2
 - Heat Recovery Chiller for Base Heating and Cooling Loads
 - Conventional Chiller Plant for Chilled Water Peaks
 - Maintain Campus Steam for Heating peaks
 - Case 3
 - High-pressure steam biomass boilers backpressure steam turbine cogeneration
 - Case 4
 - Same as Case 3 with NG boilers

U of Washington South Campus

- Case 2 Heat Recovery Chiller Option yields greatest savings relative to BAU
- Case 3 Cogeneration with biomass also yields high savings

UCDSC - Utility Master Plan

- Options
 - Business as Usual
 - NG Turbine Cogeneration (25 MW)
 - Absorption chillers use excess steam, electric cl topping
 - All campus power generation by turbine
 - Option 1A
 - Optimize Existing Cogen System
 - Option 2
 - Decommission NG turbine
 - Conventional boiler chiller plant w/ utility power
 - Option 3A
 - Decommission turbine
 - Heat recovery chiller system for base heating and cooling
 - Conventional boilers and chillers for peak loads
 - Utility power
 - Option 3B

UCDSC - Utility Master Plan

- Option 1B (Optimize existing cogeneration) has lowest NPV cost
- Heat recovery chiller options better than existing cogen operating scenario (w/GHG cost included)

Cal EPA ARB Cap & Trade

- Applies to users over 25,000 MT CO2e/yr
- Allowances are made available at auction
- Allowance quantity is slowly reduced over time (3% per year)

CARB Cap & Trade

- UCDSC analysis assumed a steep upward trend after the initial startup period
- Initial trend in GHG allowance costs is relatively flat – no obvious trend

CARB Auction Price History

Stanford: Options Evaluated

- Cogen Options w/ Steam
 - Business as Usual
 - New CT

- Cogen Options w/ Hot Water
 - New CT
 - New CT + Heat Recovery
 - New IC Engine + Heat Recovery
- Grid Power Options w/ Hot Water
 - Grid + Heat Recovery
 - Grid + No Heat Recovery
- Grid Power + On-Site Solar w/ Hot Water
 - 20% Solar
 - 33% Solar

Stanford University Central Energy Facility Replacement Options

Stanford University Central Energy Facility Replacement Options

Stanford University Central Energy Facility Replacement Options

- > We heat & cool buildings at the same time
- Cooling is just the collection of unwanted heat

Stanford can recover 65% of the heat now discharged from the cooling system to meet 80% of campus heating demands.

Source: Stanford University Draft Energy & Climate Plan (April 2009)

Final Solution – New Plant

Final Solution – New Plant

- Distribution 80%
- Building Conversions 70%
- CEF
 - Heat Recovery 80%
 - OSHPD 50%
- □ Substation 100%

Project Completion Spring 2015

Final Solution – Heat Recovery Chillers

Final Solution – Heat Recovery Chillers

Final Solution – Heat Recovery Chillers

Conclusions

- Conclusions
 - State of existing infrastructure can affect outcome
 - GHG costs shift balances between options but not yet to an extreme extent
 - Climate and energy costs are significant drivers in system selection, but are overshadowed by overall system efficiency

Questions?