Increasing Energy Efficiency in Breweries with Gas Turbine Cogeneration

Anshuman Pandey, MSc.
Leas Application Engineer, OPRA Turbines International B.V
Combined Heat and Power (CHP) increases efficiency

Source: U.S. EPA: Combined Heat and Power Partnership
Combined Heat and Power: Key Benefits

Why OP16 and CHP?

- Increase productivity
- Innovative and cheap energy
- Energy efficiency at site
- Potential to control energy prices through CHP
- Energy security → Independent energy generation
- Packaged and simple solution
- Reliable power generation

- Economic support
- Subsidies for Cogeneration projects
- Reduce emissions

Reduce production costs
Reduce energy costs
Convert waste into energy
Increase in profits

Independency, Reliability, Availability & Profitability
Breweries: Introduction

- Beer: Produced through fermentation of barley or wheat
- Energy intensive process
- Energy accounts for 3-8% of beer production costs
- Emphasis on environmental impact
 - Energy saving technologies (CHP)
 - Waste water treatment
Breweries: Manufacturing Process

- **Malting**
 - Malt is weighted, cleaned, stored
 - Malt is milled and treated

- **Mash tank**
 - Malt and adjuncts mixed in hot water
 - Insoluble grains are separated
 - Water is drained, wort is obtained

- **Boiling**
 - Wort is boiled with hops
 - Wort is cooled to 8-20°C, strained, filtered

- **Fermentation**
 - Yeast is added to the cold wort
 - Beer is “maturated” and stored

- **Filtration**
 - Beer contains yeast and bacteria
 - Pumped to the bright beer tank

- **Packing and CIP**
 - The beer is bottled and carbonated
 - Equipment is deeply cleaned (CIP)
Breweries: Market Distribution

- Worldwide production 200 Billion liters per year
- China is the leader in the production, followed by USA
- Germany production leader in Europe
- Both microbreweries and major breweries present in each country
Breweries: Energy Distribution

- Specific Energy Consumption:
 - Amount of energy required to produce 1hL of beer
 - Heat to Power ratio favorable for Combined Heat & Power

Utilities	Energy level
Hot Water | 70-80°C [158-176°F]
Steam | Low Pressure Saturated Steam 5-20 bar [70-290 PSI]

Cogeneration (Electrical Chillers)

- Steam 28.74%
- Electricity 7.18%
- Ref. 3.8%

Heat to Power Ratio=2.8:1

Trigeneration (Absorption Chillers)

- Steam 28.64%
- Electricity 7.16%
- Ref. 8.6, 20%

Heat to Power Ratio=5.2:1

*Assuming COP=4 for electric chillers
*Assuming COP=1.4 for absorption chillers
Breweries: Energy Consumption

The process of brewing beer involves several energy-intensive steps:

1. **Milling** - Grinding grains to create a mash.
2. **Mash Tun** - Mixing grains with water at 60°C for 0-10 hours. Electricity is used.
3. **Brewing Copper** - Heating the mixture to 100°C. Heat and electricity are used.
4. **Cooling** - Chilling the wort to 20-25°C for Ale, 7-13°C for Lager. Electricity is used.
5. **Fermentation** - In the fermentation tank and conditioning tank. Electricity is used.
6. **Filtration** - Clearing the beer of any debris. Electricity is used.
7. **Delicious Pint of Beer** - Chiller keeps the beer at the desired temperature. Electricity is used.

The process uses hot water, heat, electricity, and chilling to produce beer efficiently.
Breweries: Waste to Power

Grains disposal & waste water

CO2 Recovery plant
Breweries: Energy Consumers

- High thermal energy consumption:
 - Brewhouse

- High electricity consumption:
 - Chillers
 - Compressed air
 - Auxiliary Drives

- Anaerobic wastewater treatment
 - Biogas (Siloxanes & H2S)

- Gasification
 - Spent grains gasification
 - Syngas for OP16 gas turbines
Breweries: Feasibility Study (European Market)

- **Trigeneration calculations are including the investment cost of absorption chiller.**
- **All calculations for Cogeneration and Trigeneration includes complete turnkey costs i.e. CAPEX and OPEX.**

Brewery Details

- **Size:** 1.3 million hL
- **Electricity Demand:** 2,500 kWe
- **OP16 Exhaust Heat:** 4,500 kWth
- **Chiller capacity:** 640 RTons
- **Sat. Steam production:** 6 tph [13,227 lb/hr] @12bar [174 Psia]
- **Natural Gas Price:** 0.028 €/kWh
- **Electricity Price:** 0.084 €/kWh

Savings

- **High Operational Savings:** >25%
- **Quick payback:**
 - 3.6 years (Trigeneration)
 - 3.2 years (CHP)

Cost Analysis

<table>
<thead>
<tr>
<th></th>
<th>Base Case</th>
<th>CHP</th>
<th>Trigeneration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual operating savings</td>
<td>€ 0.67</td>
<td>€ 0.74</td>
<td>€ 0.74</td>
</tr>
<tr>
<td>Annual operating expenses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual fuel expenses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual electricity expenses</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Variations:

- **Annual operating savings:** € 0.2 – € 2.0
- **Annual operating expenses:** € 0.0 – € 0.4
- **Annual fuel expenses:** € 0.0 – € 0.8
- **Annual electricity expenses:** € 0.0 – € 1.0

Graph:

- **25% savings**
- **28% savings**

Trigeneration calculations are including the investment cost of absorption chiller.

**All calculations for Cogeneration and Trigeneration includes complete turnkey costs i.e. CAPEX and OPEX.*
Cogeneration & Trigeneration Integration in Breweries

<table>
<thead>
<tr>
<th>Cogeneration</th>
<th>Trigeneration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel</td>
<td>Fuel</td>
</tr>
<tr>
<td>8.9 kg/s at 570°C</td>
<td>Electricity (utilities) 1.8 MW</td>
</tr>
<tr>
<td>WHRB</td>
<td>WHRB</td>
</tr>
<tr>
<td>6.5 t/h steam</td>
<td>8.9 kg/s at 570°C</td>
</tr>
<tr>
<td>Electricity (utilities) 1.8 MW</td>
<td>Electricity (utilities) 1.8 MW</td>
</tr>
</tbody>
</table>

Legend
- GT Exhaust
- Water/Steam
- Electricity
- Ambient air
- GT Fuel
- Cold air

Notes
- WHRB: Waste Heat Recovery Boiler
- GT: Gas Turbine
- t/h: Tons per Hour
Gas Turbines: Unique points

- High heat to power ratio (~3:1): OP16 generates 1,876 kWe with 4,500 kWth
- Utilization of **hot and clean exhaust**:
 - High pressure and temperature steam production for brewhouse
 - Drying of spent grains
 - Operation of absorption chillers
- **High combined efficiency** (~90%)
- **Continuous and reliable** power and heat
- **Low emissions** of OP16 turbines
- **Fuel Flexibility**: multiple fuel use
 - Biogas from waste water treatment
 - Syngas from spent grains gasification
- Compact and Modular: Easy integration into existing process
Introduction: OPRA Turbines

- Dual-fuel & low emissions combustors (4)
- High-efficiency (90%) radial turbine
- Bearings in cold part of engine
- 6.7:1 ratio compressor
- Reduction gear
Introduction: Combustion Technology

<table>
<thead>
<tr>
<th>OP16-3A</th>
<th>OP16-3B</th>
<th>OP16-3C</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Conventional diffusion type combustor</td>
<td>▪ Dry low emission combustor</td>
<td>▪ Advanced diffusion type combustor</td>
</tr>
<tr>
<td>▪ Gaseous and liquid fuels between 20-70 MJ/kg</td>
<td>▪ Gaseous fuels between 30-51 MJ/kg</td>
<td>▪ Gaseous and fuels between 5-25 MJ/kg</td>
</tr>
<tr>
<td>▪ Dual fuel operation</td>
<td>▪ Diesel as back-up fuel</td>
<td>▪ High calorific fuel as back-up</td>
</tr>
</tbody>
</table>

OPRA TURBINES
Thank You

Anshuman Pandey
Lead Application Engineer
OPRA Turbines
Mobile: +31 (0) 6-211 540 93
E-mail: a.pandey@opra.nl
Website: www.opraturbines.com