


BIGGER ALWAYS ETTER?

aluating Central vs Distributed neration in System Expansions

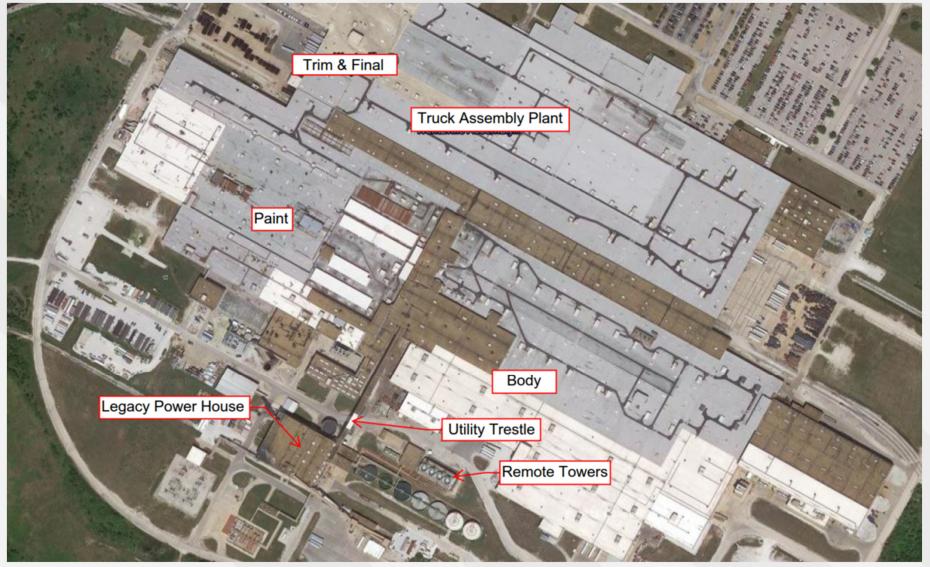
genda

- Background
- The Problem
- The Challenges
- Study Options and Results
- The Solution
- Q&A

ackground

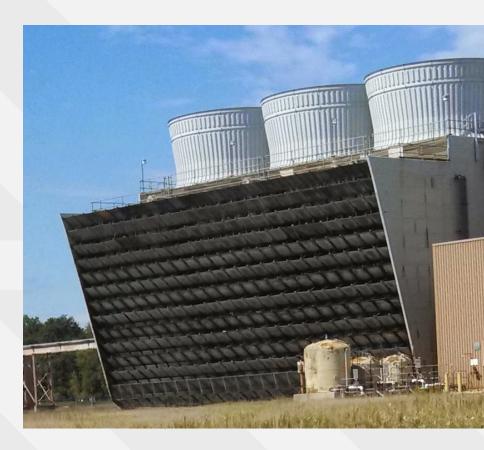
Manufacturing Plant 101

- 3-5Msqft per plant
- 4,000-6,000 employees across all shifts
- Utility Needs
 - Steam up to 350kpph
 - ► Hot Water up to 180mmBtu/hr
 - Chilled Water 9,000-12,000+ tons
- Central generation + sitewide distribution and/or distributed generation close-coupled to loads



ackground

Assembly Plant is about 3500' wide and 4M sqft



ne Problem

- Aidwest Assembly Plant Cooling Shortage
- Process issues in Paint threatening quality
- Labor issues with heat in plant threatening production
- Legacy powerhouse is failing
- Downtime costs \$2.5 million/hr.

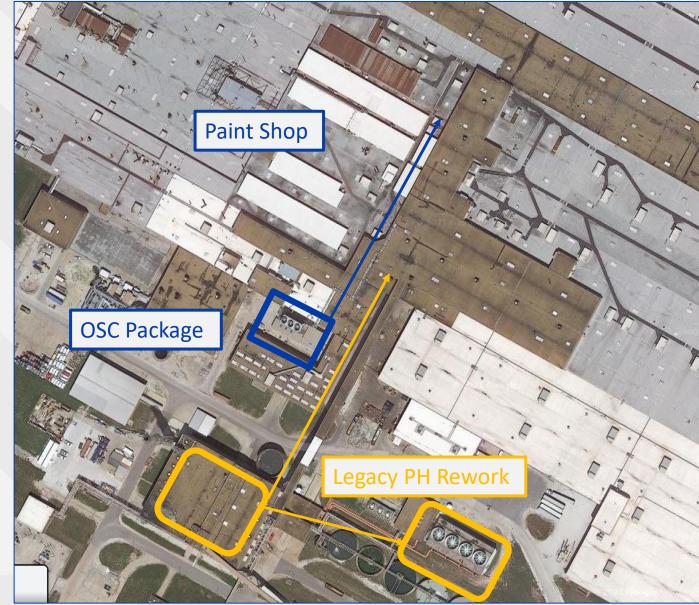
ne Problem

Aging powerhouse chillers produce 7,200 tons, but ...

- Peak demand is over 12,000 tons
- Paint processes need chilled water in shoulder months
- Legacy 2-pipe seasonal loop can't heat/cool simultaneously
- 4,500 tons of new capacity urgently needed

ne Challenges

- Fix required just 8 1/2 months after budget release in October (run May 30)
- No added downtime
- No production interference
- Zero tolerance on limited budget
- Labor may walk if cooling is late



udy Options

- ork / Update the existing rerhouse, Cooling Tower, Distribution
- Off-Site Constructed C) Modular Chilled er System
- v each option addresses scope, schedule, and get OPR's

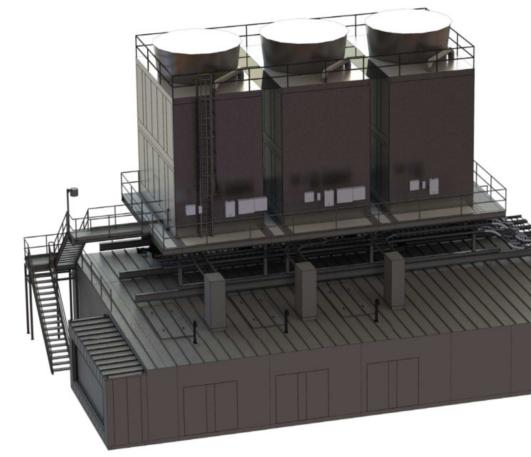
Idy Options - Analysis

- otion 1A Update Central Powerhouse (PH)
- otion 2A New Modular Plant
- otion 2B New Paint Shop Modular Plant with Separate Distribution

Description	Existing	Option 1A	Option 2A	Option 2B
Total Installed Capacity (Tons)	7,200	12,300	11,700	11,700
Peak Demand (Tons)	12,865	12,865	12,865	12,865
Total Firm Capacity (Tons)	5,600	8,700	10,100	10,100
Firm Shortfall (Tons)	7,265	4,165	2,765	2,765
Independent Paint Cooling	NO	NO	NO	YES
Total Estimated Cost		\$8,158,909	\$9,991,798	\$11,849,047
1-Year Net Energy Impact		\$(834,228)	\$(1,461,067)	\$(1,596,823)
2-Year Net Cost		\$6,490,453	\$7,069,664	\$8,655,401
5-Year Net Cost		\$3,987,769	\$2,686,463	\$3,864,932

udy Results - Package Option Benefits

- Distributed Off-site Constructed (OSC) Solution vs. Central pproach
- New package leaves options for future PH modernization open
- Location adjacent loads minimizes field connection costs
- Local system avoids disruptive cross-campus digs in District systems
- \$ for paint process loop instead of long connecting mains
- Dedicated process CHW loop from PH cost prohibitive
- Offsite build
- Reduced field labor and site intrusion, budget risk
- Enable process loop
- Enabled aggressive schedule (8 ¹/₂ months from \$ approval)



ne Solution

- ff-site constructed, modular, pre-piped nd wired system
- ngineered/built by Epsilon as becialty supplier
- ompliant to Customer's specs...
- .But adapted to modular req's
- euse of designs from related psilon projects at customer cut chedule by months
- educed field installation effort
- ew dedicated process CHW loop stead of rehab spends in old PH

ne Solution Installation

2:30 PM April 24 ... ready to lift

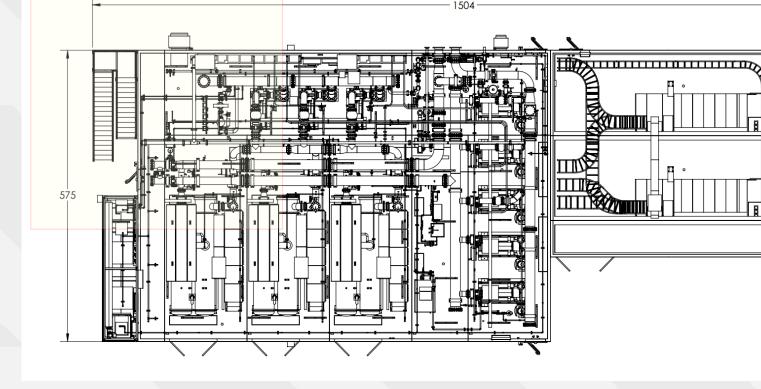
Sub Station Set Complete 5:00 PM April 25

Substation ...

First chiller module April 26 ...

ne Solution Installation

May 8 set ...fully wired and ready for startup: May 18 - 24

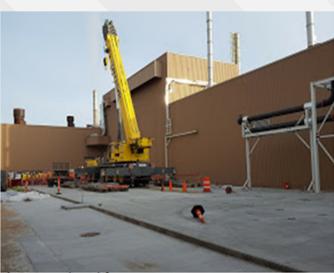


ne Solution

- tributed OSC plants reduce field costs
- al utility generation ids costly piping s in developed npuses
- C packaged utilities imize field vity/disruption
- d schedule as short 6 weeks, not 8 nths

ssons Learned

- stributed generation can be less disruptive than pansion of a district plant
- SC package installation results in minimal sruptions
- SC builds offer safety benefits
- ess field labor
- afer tasks
- tal schedule reduced
- ood packages are highly maintainable



ril 24 ... ready to lift

Questions?

nank you

ffrey Johnson

lication Engineering Manager

w.epsilonfab.com

Dalton Avenue oston, Ontario 1 8N6 248 804-9489 eyj@epsilonfab.com

BURNS MEDONNELL.

David K. Goetz, PE

Burns & McDonnell Business Development Manager \ *On*Site Energy & Power M 314.740.5491 \ O 314.682.1573 \ F 314.682.16 <u>dgoetz@burnsmcd.com</u> \ <u>www.burnsmcd.com</u> 425 S. Woods Mill Rd. Ste. 300 \ Chesterfield, MO 63017

*Registered AL, AZ, FL, IL, IA, IN, KY, MI, MN, MO, NE, NV, OH, PA, TN, W