

An Integrated Approach to Central Energy Plant Control Systems

Jeremy Shook, PE

March 7,2018

Is This Your Controls Staff?

Agenda

- Typical Design Approach
- Integrated Design Approach
- Integrated Design Approach Implementation
- Case Studies
- Summary

Typical Design Approach

Typical Design Approach

Local Control Systems

Come with packaged systems provided by OEM

Plant Control System

- Interfaces with Local Control Systems for display to Operator in Control Room
- Plant Control System picks up miscellaneous BOP IO

System Architecture

So What's the Problem?

DESIGN ATTRIBUTE	ΙΜΡΑϹΤ
Multiple Platforms	Increased O&M Costs
Variations in IO/Logic/HMI	Increased Complexity of O&M
Datalinks between Local Control Systems and Plant Control System	Lower Plant Availability

Integrated Design Approach

Integrated Design Approach

Local Control Systems

- Minimize as far as practical
- Extent depends on the following:
 - New plant vs existing plant
 - Type of packaged system
 - Suitability of Plant Control System platform for control
- Plant Control System
 - Controls as much of the plant as possible

System Architecture (one of many)

What Are the Benefits?

DESIGN ATTRIBUTE	IMPACT
Minimize number of platforms	Decreased O&M Costs
Standardized Control System Design	Decreased Complexity of O&M
Native Network Between Plant Control System and Packaged Systems	Increased Plant Availability

Integrated Design Approach Implementation

How Much to Integrate into Plant Control System?

New Plant

- As much as possible
- Things to consider leaving out:
 - Machine control systems
 - Standard product control systems
 - Equipment Control is not suitable for Plant Control System

Existing Plant

- As much as possible
- Things to consider leaving out:
 - Anything O&M staff wants to continue to use OEM for services
 - Equipment Control is not suitable for Plant Control System

Plant Control System Design Criteria

Minimum one set of redundant controllers

- Segregate multiple steam/electricity/chilled water units based on availability requirements
- For Boiler or fired HRSG, need separate Combustion Control and Burner Management controllers per NFPA 85
- Other segregation as needed based on plant design

Plant Control System Integration with Skids

Plant Control System Standardization: Hardware

Controllers

- IO Modules
- Communication Modules
- Networking Components
- Power Supplies
- Human Machine Interface

Plant Control System Standardization: Software

IO

- Standardized tagging/naming convention
- Logic Design
 - Develop functional structure to match plant design
 - Standardized logic for plant components
- Graphic Design
 - Standard templates and faceplates with macros
 - Color standards
 - Alarming standards
 - High performance graphics

Project Execution

Define design standards to be used

- 10
- Logic
- Graphics
- HW Design
- Develop spec documents:
 - Control system architecture
 - IO List
 - Specification
 - Include design standards
- Verify implementation during submittal reviews and FAT
- If Engineering firm is also system integrator can streamline process

Project Execution: Integration of OEM Equipment (New Plants)

Design Input from OEM

- P&IDs
- Functional Input one or more of the following:
 - Sequence of Operation
 - Functional Description
 - Control Narrative
 - Logic Diagrams
- Cut Sheets of Field Devices
- Drawings of Skid Interface
 - Schematic for junction box
 - Remote IO panel drawing

Execution Support from OEM

- Review implementation of design into control system
 - Logic
 - Graphics
 - IO
 - BMS drawings
- FAT support
- FAT acceptance
- Site support

Case Studies

New Plant Design

Existing Plant Upgrade

SUMMARY

Summary

Integrated design approach offers the following benefits

- Improved availability
- Simplified and more effective O&M
- Lower O&M costs
- Integrated design approach requires different approach for design and project execution
- Integrated design approach will result in different Plant Control System architectures depending on the following:
 - New vs existing plant
 - Objectives of Owner

Let's Get This Guy Some Help!

Jeremy Shook

jtshook@burnsmcd.com

704-450-8924

Booth #67

March 7,2018

