Predicting the Variability of Economic Performance Casey Reimann, PE | Jacobs Engineering Group Inc.

Right Sizing Process

Analyze financial performance of a proposed solution against **unforeseen fluctuations**

Value in Predicting Economic Performance

Mitigate...

Reaffirm optimal plant layout

dentify critical variables

Knowledge

nt layout bles

Variables that Affect Performance

- **D**OE escalation rates
- Electricity cost
- **C**apital cost
- Availability
- Fuel cost

DOE Escalation Rates

Year	Nat Gas	Electric	Fuel Oil	•
2027	-0.26%	0.23%	1.01%	

Published rates are projections

9.04%
3.51%
1.51%
1.67%
1.64%
1.35%
1.51%
0.44%
-0.26%
0.00%
-0.96%
1.50%
1.47%
1.62%
1.34%
0.91%
1.97%
2.58%
2.44%
2.68%
4.11%
1.94%
1.06%
1.11%
1.10%
1.16%
1.27%
1.27%
1.27%
1.27%
1.27%

Nat Gas

Year

Florida Utility Rate Escalations (based on DOE Projections, Excludes Inflation)

Electric	Fuel Oil		
1.57%	2.69%		
1.75%	13.39%		
0.88%	8.86%		
0.94%	2.96%		
0.20%	1.63%		
0.73%	1.46%		
0.46%	1.11%		
0.49%	0.46%		
0.23%	1.01%		
-0.26%	1.31%		
-0.16%	1.52%		
0.20%	1.14%		
0.49%	1.39%		
0.68%	0.94%		
0.55%	1.02%		
0.54%	1.22%		
0.48%	0.75%		
0.60%	0.50%		
1.01%	1.64%		
1.25%	0.89%		
1.54%	0.80%		
0.88%	0.75%		
0.60%	0.79%		
0.60%	0.23%		
0.62%	0.16%		
0.59%	0.04%		
0.66%	0.16%		
0.66%	-0.19%		
0.66%	0.23%		
0.66%	0.43%		
0.66%	0.13%		

Electricity Rates

It is **CRITICAL** to understand the utility rate structure in your region and how it will affect CHP.

Supplemental Power

Reservation Fee

Energy Charges

Demand Ratchet

Standby / Supplemental Rates

Rates are inconsistent among utilities

Rates are commonly developed assuming outages occur at peak times

Rates impact operating strategy

Demand charge ratchet can turn a one-time demand peak into a long-term fee

Excessive stand-by rates and other charges will negatively impact the economics of CHP

Standby / Supplemental Rates

Utility Policy	Standby/ Supplemental Rate Description
Potomac Electric Power Company Schedule S (2014)	 Charges for demand with a minor reservation fee to secure capacity Billing demand is based upon a monthly peak demand with no ratchet
Georgia Power Schedule BU-5 (2018)	 Demand-based and energy charges are on a declining schedule Billing demand is based upon 30-minute maximum during the month 12-month ratchet
Texas Public Utility Commission Various Utility Contract Demand Policies (2014)	 No standby rates developed for CHP Standby rates are negotiated by utilities on a case- by case basis

Impact to CHP

Favorable

Unfavorable

Neutral

Capital Cost

Seems like a big deal now, but.....

Does not factor heavily compared to efficiency over a life cycle analysis

Capital Cost Case Study

	Estimated	Annual Purchase	ed Utility Costs	30-Year Life Cycle Cost		
Option	Installed Costs	Fuel	Electricity	Total	Savings	
83% Efficient Steam Boiler	\$1,000,000	\$3,575,000	\$40,269	\$121,387,433	N/A	
84% Efficient Steam Boiler	\$1,100,000	\$3,536,981	\$39,233	\$120,187,375	\$1,200,058	

100 MMBtu boiler: \$1,000,000

Capital Cost Case Study

	Estimated	Annual Purchase	ed Utility Costs	30-Year Life Cycle Cost	
Option	Installed Costs	Fuel	Electricity	Total	Savings
83% Efficient Steam Boiler	\$1,000,000	\$3,575,000	\$40,269	\$121,387,433	N/A
84% Efficient Steam Boiler	\$1,100,000	\$3,536,981	\$39,233	\$120,187,375	\$1,200,058

Adding an economizer: Increases cost by 10% Improves efficiency by 1%

Availability: Associating Monetary Value

- Capital cost for redundancy
- ✓ Fuel cost
- ✓ Electric (standby rates)
- ✓ 0&M cost

Fuel Cost

- Fluctuations in fuel prices \checkmark
- Flexibility to go offline \checkmark when it is not economical
- Firm/ interruptible fuel \checkmark supplies
- Curtailment \checkmark
- Secondary fuel source \checkmark
 - Impacts to Title 5 \checkmark emission permits

Source: US Energy Information Administration

Life Cycle Chart

		Annual Purchased Utility Costs (2018 rates, Current Loads)			30-Year Life	Cycle Cost	
Option	Estimated Installed Costs	Fuel	Electricity	Standby Electric	Annual O&M Costs	Total	Savings
Baseline (Packaged Boilers)	\$203,978,000	\$4,380,580	\$38,254,718	N/A	\$1,983,333	\$1,564,015,040	N/A
CHP, ~8MW Capacity	\$219,787,000	\$5,958,995	\$33,736,345	\$1,199,473	\$2,556,435	\$1,559,276,337	\$4,738,703
CHP, ~13MW Capacity	\$223,819,000	\$6,884,897	\$31,058,311	\$1,487,964	\$2,768,891	\$1,532,631,240	\$31,383,800
Combined Cycle, ~25MW Capacity	\$245,347,000	\$11,223,101	\$24,658,125	\$2,103,435	\$3,542,275	\$1,563,795,232	\$219,807
Combined Cycle, ~36MW Capacity	\$254,674,000	\$14,303,809	\$17,877,833	\$2,748,931	\$4,066,892	\$1,520,908,765	\$43,106,275
Combined Cycle, ~50MW Capacity	\$258,240,000	\$20,501,979	\$10,677,087	\$3,290,554	\$4,645,233	\$1,568,353,205	-\$4,338,165

Environmental Impacts

CO₂ reduction = \$ J Social Cost

	CO ₂ Emissio	Annual CO ₂ Cost	
Option	Annual Total	Reduction vs. Baseline	\$10/ Ton
Baseline (Packaged Boilers)	401,526	N/A	N/A
CHP, ~8MW Capacity	376,254	25,272	\$252,720.06
CHP, ~13MW Capacity	360,970	40,556	\$405,561.82
ombined Cycle, ~25MW Capacity	348,599	52,928	\$529,276.35
ombined Cycle, ~36MW Capacity	318,154	83,372	\$833,721.38
ombined Cycle, ~50MW Capacity	321,118	80,408	\$804,082.68

CHP Sensitivity Analysis

Life Cycle Cost Savings

Virginia – CHP – 13MW

CHP Sensitivity Analysis

Life Cycle Cost Savings

Florida- CHP - 13MW

Virginia

Florida

Casey Reimann, PE Booth #61

