End to End Chilled Water Optimization
Merck West Point, PA Site

Michael Nyhan, PE – Associate Director at Merck
Travis Smith, PE – Principal at Smith Engineering
Dan Shirley – Utilities Engineer at Thermo Systems
Site Background

- 500 Acre Mixed Use Manufacturing, Research, and Administration Site
 - 60+ buildings ranging in age from 1950s to 2000s
 - 6.1MM sq ft under roof
- Over 62,000 tons of installed chilled water capacity
 - 7 Plants – 43 chillers – 209 pieces of equipment
 - ~ 50/50 steam turbine and electric chillers
 - > 25 miles of distribution piping
- Unique cooling demands as a result of research and manufacturing
 - Significant variations in cooling demand from summer to winter
Systemic Chilled Water Challenges

Supply
- No Centralized Supply
- Control Schemes
- Cogen Constraints
- Zero Downtime

People
- Lack of understanding
- Disconnect between supply and demand

Demand
- Low dT / high dP
- Complex distribution
- Bypasses
- Simultaneous heating and cooling
- Load variations
End to End Optimization Goals

- Focused “end to end” optimization of chilled water to maximize the existing plant assets and improve building performance
 - Ensure reliable supply and efficient operation
 - Utilize our existing assets smarter = eliminate waste
 - Drive down utility cost and the need for additional capital assets
 - More Available Assets = Master plan flexibility
- Establish a process as a template for the next zone of the chilled water network optimization
End to End Optimization Scope

B8 – 12,000 tons
B8 – 12,000 tons

B45 – 6,500 tons

Remaining Site – 43,500 tons
End to End Optimization - Approach

Supply
- Focus on B8 plant that serves a pilot plant, multiple research and administration buildings
- 12,000 tons – 1 electric, 5 steam turbine chillers

People
- Focus on training and awareness of chilled water system

Demand
- Focus on resolving issues in the piping system and within the user buildings by a variety of methods
End to End Optimization – Key Activities

Supply
- B8 Chiller Plant Optimization Capital Project
- Termis Solution

People
- Pilot Plant Utility Alliance
- Training of Building Managers and Mechanics
- Education for Design Engineers

Demand
- Metering HMI
- BAS Interrogation
- Brute Force Walkdowns
Supply – Optimizing CHW Generation

- Plants use four fuel sources
 - Cogen Electric
 - Cogen Steam
 - Grid Electric
 - Boiler Steam

- Systems with multiple fuel sources but be optimized on common energy units or more preferably $.
 - All upstream system efficiencies and pricing must be understood
Supply – Optimizing CHW Generation

- All optimization is non-proprietary.
- Multivariable equations with adjustable coefficients
 - Number of Pumps
 - Equation Constants
 - A: 3.60746000000
 - B: 0.00014121000
 - C: -0.00856000000
 - D: -0.000000000297
 - E: 0.00002655000
 - F: -0.000000007695
 - CWST
 - Equation Constants
 - A: 15
 - B: 4.5
 - C: 0.78

- Data from PI is run through machine learning and constants can be updated as frequently as desired
Distribution Optimization with Termis

- Macro Distribution Decisions and Planning
- Potential Elimination of Chiller Plant B52
- Interconnection of all plants
- Plant Dispatch
Demand – Optimizing Customer Usage

• Policing our utility customers
 – Equipment overrun caused by low delta T
 • High flow + Low load = Poor COP
 • Isolate unloaded CHW flow
 – 3-way valves, bypasses, OOS equipment

• Big data at our disposal
 – 450 CHW instruments
 – >4,000 calculated tags
 • Tonnage, dT, dP, totalization, cost
 – Need a filter to help locate problems only

• Creation of a new HMI
Demand – Data Driven Investigations

- **Processbook HMI**
 - Holistic view of entire CHW network
 - Visually focused on problems
 - dT, dP, failed devices, unusual loading
- **Building Automation System (BAS)**
 - CHW control systems within a building
 - Focused on HVAC and process operation
- **Brute Force Walkdowns**
 - “Health” of a building’s CHW system
 - Leaking pneumatics, manual bypasses, clogged strainers
Case Study: B14 Low dT Investigation

900 GPM
1.5 years
Case Study: B14 Low dT Investigation

- **Chilled Water ΔT**
 - ΔT is the temperature difference between supply and return water flowing through a building
 - This temperature is a very good indicator for malfunctioning valves that are not maintaining adequate flow
 - Typically this temperature is ~10°F by design throughout the year
 - B14’s average ΔT was about 4°F!

- **The Culprit: AHU 7**
 - February 2016 AHU 7 was found to be off with its CHW control valve wide open due to a design flaw
 - This valve was allowing roughly 800 GPM through the AHU for 1.5 years or about 600,000,000 gallons
Demand – The Metering Problem

- Building load regressions
 - How has the building behaved in the past?
 - Dependency on weather conditions

- Error detection equation
 \[PI \ exp = \frac{(0.01681 \times WB^3 - 1.59587 \times WB^2 + 47.20835 \times WB - 451.85376) - (B14 \ tonnage)}{(0.003 \times WB^3 - 0.51214 \times WB^2 + 18.4556 \times WB - 291.935)} + 10 \]
 - Derived from PI historian data using PI Datalink
 - Custom built report automatically creates PI expressions
 - Detects unusual load conditions based on OA wet bulb temp

- Translation to HMI
 - Must be illustrated graphically to have use
 - Gives user clear indication of need to act
Demand – Creating Active Regressions

Building tonnage behavior (PI Datalink)

Tonnage vs. Wet Bulb

- Graph-Generated
- Poly. (UpStdDev)
- Poly. (DownStdDev)
- Regression Eq

Real-time HMI (PI Processbook)
Demand – Error Detection in Action

Differential Pressure flow meter: clogged low-side sensing line
People

• Pilot Plant Utility Alliance
 – Identified as the largest consumer of chilled water (among other utilities)
 • Cross functional team established with strong building leadership to improve efficiency

• Training of Demand Side Owners and Mechanics
 – Supply side driven effort to train the building managers and their mechanics as to the impact of inefficient use of chilled water

• Education For Design Engineers
 – Central utilities involved in early design decisions
 – Established a notification process for using CHW
End to End Optimization – Results Summary

B08 Optimization Results (Pre Machine Learning)

<table>
<thead>
<tr>
<th></th>
<th>Pre-Optimization</th>
<th>Post Optimization</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam Chiller Average lb/Ton</td>
<td>11.10</td>
<td>9.40</td>
<td>lb/Ton</td>
</tr>
<tr>
<td>Elec Chiller Average kW/Ton</td>
<td>0.76</td>
<td>0.63</td>
<td>kW/Ton</td>
</tr>
<tr>
<td>CHW Pump Average kW/Ton</td>
<td>0.114</td>
<td>0.057</td>
<td>kW/Ton</td>
</tr>
<tr>
<td>CW Pump Average kW/Ton</td>
<td>0.174</td>
<td>0.128</td>
<td>kW/Ton</td>
</tr>
<tr>
<td>CT Fan Average kW/Ton</td>
<td>0.068</td>
<td>0.054</td>
<td>kW/Ton</td>
</tr>
</tbody>
</table>
Lessons Learned

• GENERAL
 – No silver bullet solution – customizable approach for each situation
 • Complex relationships between supply and demand exist

• SUPPLY
 – Chiller plant optimization without demand side optimization is short sighted
 • Machine learning and network distribution optimization is the current focus

• DEMAND
 – Metering is key!
 • Need to have eyes on the system at all time
 • Being able to quantify low delta T and converting it a meaningful metric
 – Fresh eyes are needed for field walkdowns

• PEOPLE
 – Training and re-training is key
 • Speak demand side language (criticality, risk, compliance)
Next Steps

• SUPPLY
 – Future Optimization
 • Optimizing the balance of the plant CHW systems over the next 3 years
 – Termis calibration and utilization for operational improvements and site master planning

• DEMAND
 – Metering
 • Significant investment in metering of buildings

• PEOPLE
 – Continuing to promote connection between chilled water optimization and overall system reliability
 • Speaking production and research language
Phase 1 - Complete

Phase 2 - Complete

Phase 3 - Underway
Thank You / Questions?