

ISLAND LIFE – OPERATING YOUR MICROGRID IN ISLAND MODE

Michael Dempsey

February 21, 2017

Agenda

- System Configuration Utility and Campus
- Grounding Considerations
- Protection Issues
- Case Studies

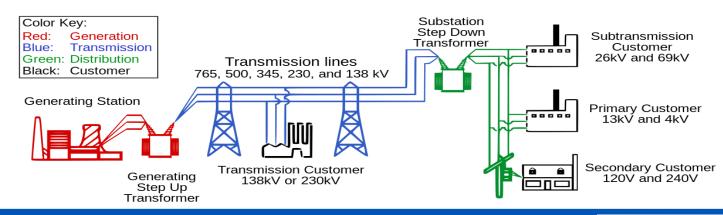
Microgrid Definition

A microgrid is

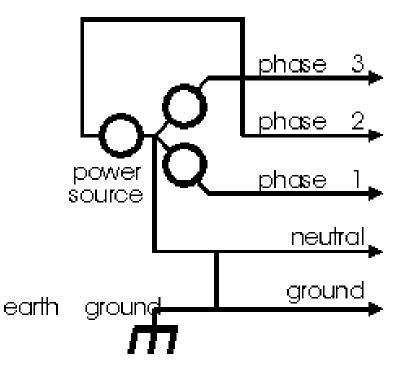
"a group of interconnected loads" and distributed energy resources within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid [and can] connect and disconnect from the grid to enable it to operate in both grid-connected or island-mode." - the U.S. Department of Energy

Microgrid Definition

A microgrid is

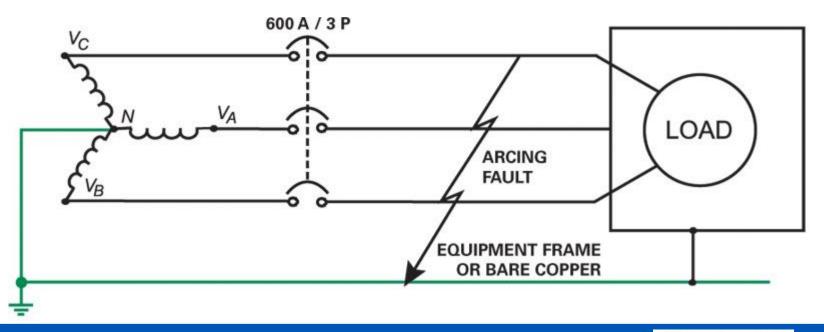

"a group of interconnected loads" and distributed energy resources within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid [and can] connect and disconnect from the grid to enable it to operate in both grid-connected or island-mode." - the U.S. Department of Energy

Utility System

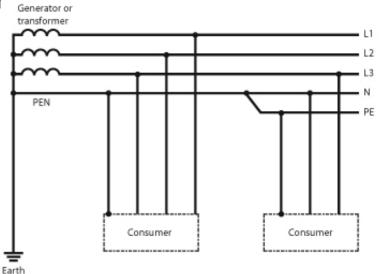

BURNS MEDONNELL

- Typically 3-Phase 4-Wire Multipoint Grounded Wye
- Campus Distribution System
 - 3-Phase 3-Wire Solidly Grounded Wye
 - 3-Phase 4-Wire Solidly Grounded Wye
 - 3-Phase 3-Wire Low Impedance Grounded Wye
 - 3-Phase 3-Wire Ungrounded

- Utility System
 - Typically 3-Phase 4-Wire Multipoint Grounded Wye
- Serves Both 3-Phase and 1-Phase Load
 - Load Current Normally Flows on Neutral Conductor

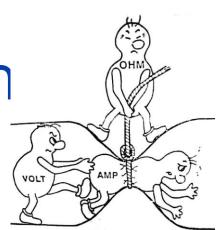


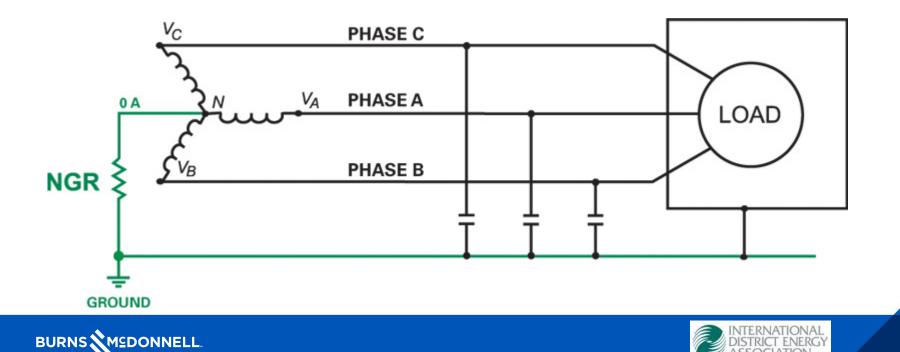
Campus System

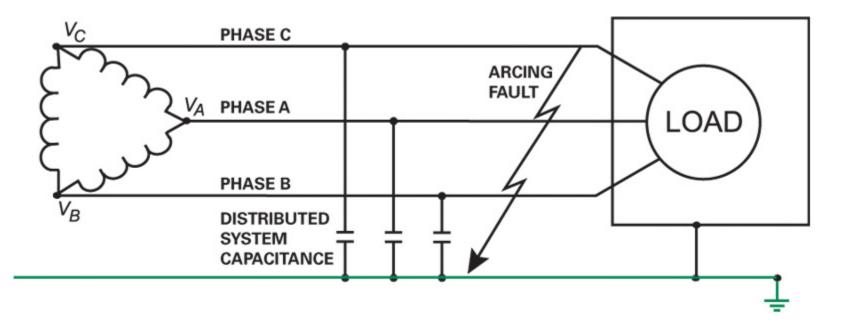

BURNS MEDONNELL.

- 3-Phase 3-Wire Solidly Grounded Wye
- Serves Only 3-Phase Load
 - No Load Current Normally Flows on Neutral/Ground Conductor

INTERNATIONAL DISTRICT ENERGY ASSOCIATION

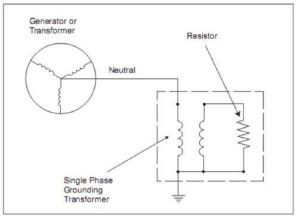

- Campus System
 - 3-Phase 4-Wire Solidly Grounded Wye
- Serves Both 3-Phase and 1-Phase Load
 - Load Current Normally Flows on Neutral/Grour Conductor

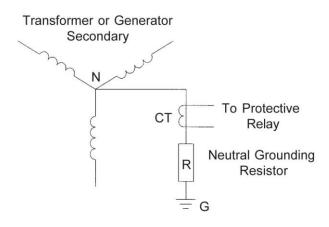




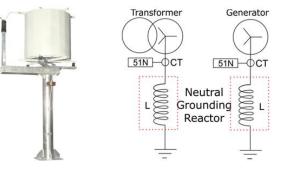
- Campus System
 - 3-Phase 3-Wire Low Impedance Grounded Wye
- Serves Only 3-Phase Load
 - Ground Current Limited By NGR

- Campus System
 - 3-Phase 3-Wire Ungrounded
- Serves Only 3-Phase Load
 - No Ground Current Flows Ground Conductor




Grounding Conside

- Synchronous Generators
 - Zero Sequence Impedance Much Less Than
 Positive Sequence
 - Some Neutral Impedance Typically Needed
 - Method Depends on Load Served
 - ► Single Phase
 - Three Phase


BURNS MEDONNELL.

Neutral Grounding Resistor Schematic

CODE	4P73-5500	
FRAME NO.	73	
INQUIRY NO.	DC17-10205	
ENCLOSURE	ODP	
GENERATOR RATING		

DATE
NAME
E-CARD

20-Jan-17	
Ben Johnson	
E234*R4001	

A.

KW	KVA	VOLTAGE	AMPS	PHASE	HERTZ	POLES
16000	18823.5	12470	872	3	60	4
			INSULATION	RATED TEMP. RISE IN °C		
RPM	CONNECTION	PITCH	CLASS	STATOR (RTD)	FIELD (BY RES.)	AMB. °C
1800	WYE	0.7619	Н	80	80	40

GENERATOR OPERATING CHARACTERISTICS

EFFICIENCY (%)		HEAT REJ.	I			
% LOAD	@ 0.9 PF	@ 1.0 PF	BTU/HR]			
100%	97.5	97.9	1623690				
75%	97.2	97.6	1376635				
50%	96.3	96.9	1182841				
25%	93.5	94.4	1042249				
LOSSES (KW)		LOAD (0.9 PF)	NO LOAD				
CORE		90.3	90.3				
F&W		175.0	175.0				
STRAY LOAD		66.9	0.0				
I ² R STATOR		41.3	0.0				
I ² R ROTOR		25.8	3.7				
EXCITER		3.9	0.5				
ΤΟΤΑΙ		403 1	269.5				
REACTANCES (VALUES ARE % AT KVA RATING)			SAT.	UNSAT.	NOTE: DIVIDE		
DIRECT AXIS SYNCHRONOUS		Xd	190.6	206.7	BY 100 FOR		
DIRECT AXIS TRANSIENT		X'd	22.6	25.7	P.U. VALUES		
DIRECT AXIS SUBTRANSIENT		X"d	16.6	19.6			
QUADRATURE AXIS SYNCHRONOUS		Xq	85	82.2			
QUADRATURE AXIS TRANSIENT		X'q	85	82.2			
QUADRATURE AXIS SUBTRANSIENT		X"q	7.9	9.3			
NEGATIVE SEQUENCE		X2	12.3	14.4			
ZERO SEQUENCE		X0	4.3	5			
LEAKAGE REAC	TANCE		XL	11.1	12.7		
	77	BIL (volts)				micro-farads	

Grounding Considerations

▶ IEEE 1547

- Section 4.1.2 Integration with Area EPS Grounding
 - Not cause overvoltages exceeding rating of equipment connected to EPS
 - Not disrupt coordination of ground fault protection of area EPS
- Unit Connected
- Isolation Transformer
 - Delta-Wye
 - Wye-Wye
 - Delta-Delta
- Can Affect Islanded Operation

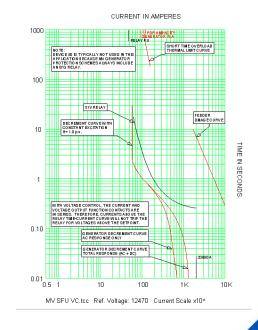
Grounding Conside

- Unit Connected
 - Connect Generation at Distribution Voltage
 - Typical for Medium-Voltage Installations
 - Low Impedance Grounding
 - Hybrid High Resistance Grounding
- Generation Subject to Utility Short Circuit Current
- Islanding Simplified

Grounding Considerations

Isolation Transformer

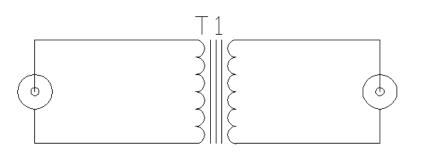
- Delta-Wye
 - Eliminates Ground Current Contribution to Utility
- Wye-Wye
 - Eliminates Overvoltage Potential
- Delta-Delta
 - Eliminates Ground Contribution to Utility
 - Generator High Impedance Ground
- Islanding Must Account for Isolation Transformer Impact
 - Potential for Ungrounded Island



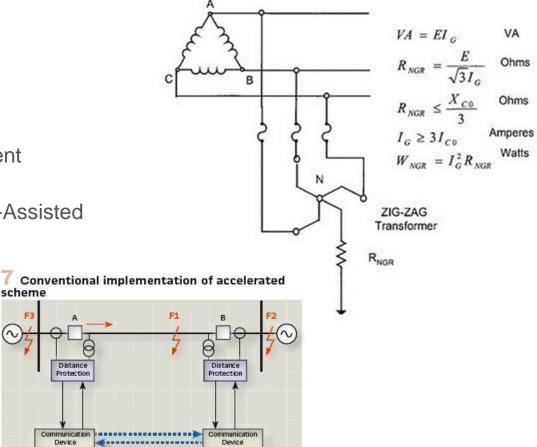
Generator Protection Issues

Unit Connected

- High Short Circuit Available to Generator Regardless of Grounding Method When Utility Connected
- Coordination When Islanded Generation Only Source of



Generator Protection


- Isolation Transformer
 - Delta-Wye
 - High Short Circuit Available to Generator Regardless of Grounding Method When Utility Connected
 - Can Result in Ungrounded Island
 - Wye-Wye
 - Eliminates Overvoltage Potential
 - High Short Circuit Available to Generator Regardless of Grounding Method When Utility Connected
 - Delta-Delta
 - Eliminates Utility Ground Fault Contribution
 - Can Result in Ungrounded Island

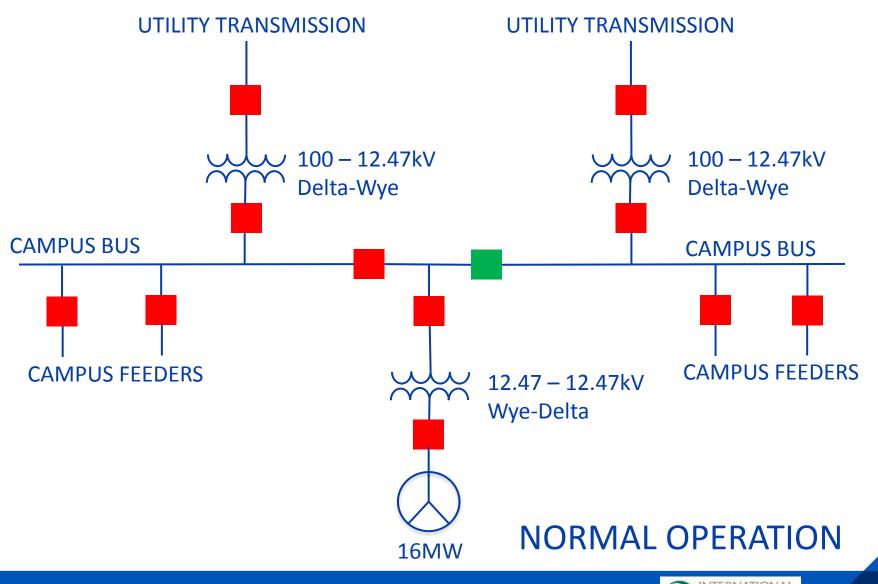
Generator Protection Issues

- Ungrounded Island
 - Connect Zig-Zag Grounding Transformer to Island
- Inverter Based Generation
 - Very Low Short Circuit Current Available When Islanded
 - Incorporate Communication-Assisted
 Tripping
 - Zone Interlocking

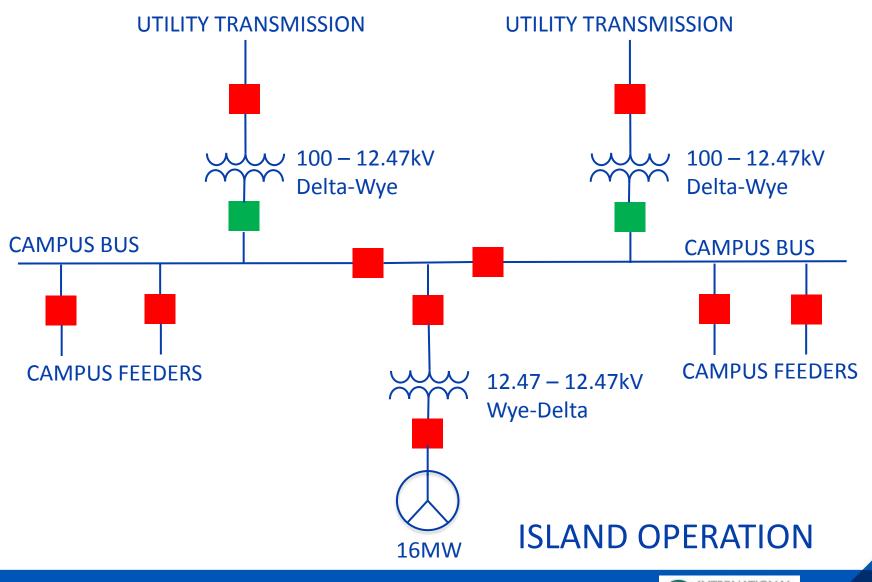
Case Study Clemson University/Duke Energy CHP

Project Background

- Primary Distribution Interconnect
- Utility owned substation
- 16MW Synchronous Generation Utility Owned
 - Normally designed to operate grid connected
 - Capable of Islanded Operation and Blackstart
- Clemson Distribution System
 - 3PH 4W Solidly Grounded Wye
 - Serves Both 3-Phase and 1-Phase Load
- Duke Distribution System
 - 3PH 4W Solidly Grounded Wye



Design Consideration



- Island Operation Required
- Generator Protection Critical Operational Continuity
- Ground Fault Coordination
 - Ground Current Contribution from Generation Acceptable

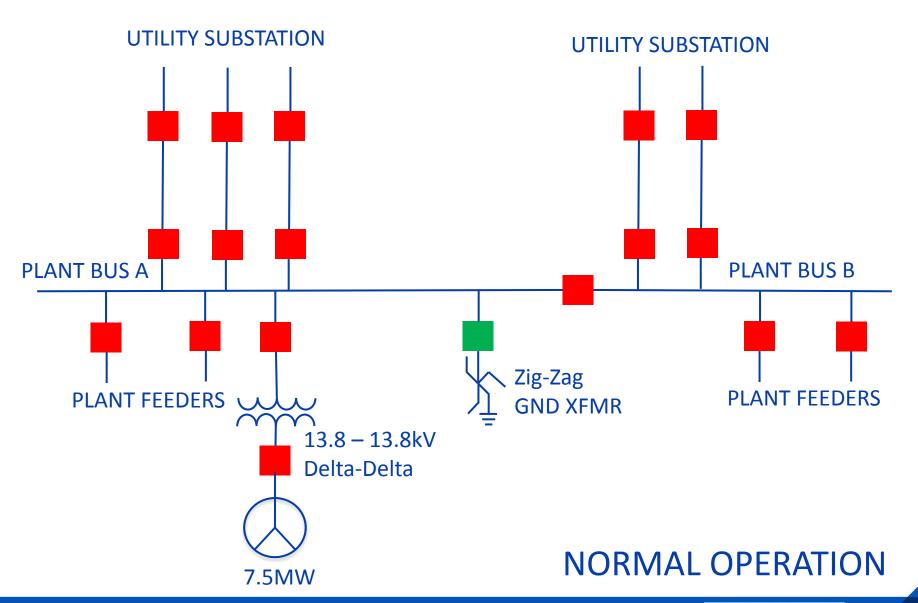
DISTRICT ENERGY ASSOCIATION

Case Study

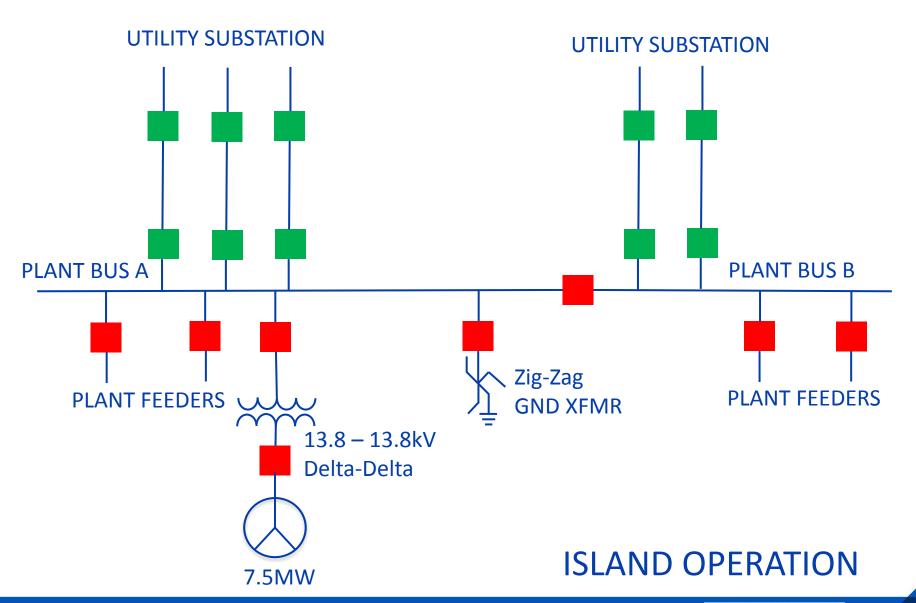
Architect of the Capitol CHP

Project Background

- Primary Distribution Interconnect
- Utility owned substation
- 7.5MW Synchronous Generation
 - Normally designed to operate grid connected
 - Capable of Islanded Operation and Blackstart
- AOC Distribution System
 - 3PH 3W Solidly Grounded Wye
 - Serves 3-Phase Load Only
- PEPCO Distribution System
 - 3PH 4W Solidly Grounded Wye



Design Consideration:



- Island Operation Required
- Generator Protection Critical Operational Continuity
- Isolation Transformer Mandated by PEPCO
 - Delta Connection to Utility
 - Eliminate Ground Current Contribution from Generation

Summary

- Island Operation Requires Careful Planning and Design
- Driven by Connected System Configuration
- Proper Design of System Grounding
- Careful Consideration of Generator Protection Requirements
- Understanding Coordination Limitations

BURNSMCD.COM/ONSITE

CONTACT Michael Dempsey, P.E. Electrical Department Manager P 817-733-8186 E mdempsey@burnsmcd.com