Campus Energy 2021 BRIDGE TO THE FUTURE Feb. 16-18 | CONNECTING VIRTUALLY WORKSHOPS | Thermal Distribution: March 2 | Microgrid: March 16

Now Comes the Hard Part of De-carbonization!

Electrified Campus Heating Systems

Lynn Bailey – University of Denver Nate Taylor – Affiliated Engineers, Inc.

Q&A Will Not Be Answered Live

Please submit questions in the Q&A box. The presenters will respond to questions off-line.

Campus Overview

- Founded in 1864 as Colorado Seminary in the Colorado Territory
- Great Private University dedicated to the Public Good
- 3.8 million square feet over 125 acres in the City of Denver
- 11,500 students & 3,800 staff/faculty
- Campus is a working Arboretum
- 18 of 88 Buildings on chilled water distribution system
- 12 of 88 Buildings on low pressure (10psig) steam distribution system

University Hall: 1892

Burwell Center for Career Achievement: 2020

Study Objectives

Sustainability Goals & Results
Steam to Hot Water Conversion Feasibility
System Comparisons
Findings
Next Steps

Sustainability Goals & Results

- Carbon Neutrality by 2050
 - 24% reduction by 2020
 - 45% reduction by 2025
 - Baseline year 2006
- 5% on-site renewable by 2025
- Energy conservation projects with 5-yr payback
- Reduction of 500,000kWh annually

36% reduction in emissions Below 2020 goal by 12% Above 2025 goal by 9%

Campus Steam Plant Carbon Emissions and Study Goals

Feasibility study converting existing low pressure steam boiler system to hot water with hot water generators as the primary source.

Effort aimed to:

- 1. Improve energy efficiency
- 2. Reduce Scope 1 emissions
- 3. Future planning

Conversion Feasibility

The Distribution
The Buildings
The Plant

Campus System Overview

- Low pressure steam boiler plant serves 12 Buildings or 20% of DU's Building Stock with a Firm Capacity of 1200HP
- Approx. 15,000ft of direct buried steam piping with buried isolation valves in some locations and most shutoff valves within buildings.
- New Distribution installed late 90s and early 2000s

Distribution Conversion

OCIATION

Building Conversion Example

• Replace converters w/ plate & frame heat exchangers

- Replace steam heated domestic water heater with water heated domestic water heater
- Demolish existing steam lines to building and install new HW BRIDGE TO Feb. 16-18 | CONNECTING VIRTUALLY WORKSHOPS | Thermal Distribution: March 2 | Microgrid: March 1

MARK	LOCATION	TYPE	TOTAL	DESIGN DUTY	ADD'L PLATES	FRAME	HOT SID	E					COLD SIDE						UNIT DIMEN	ISIONS		REMARKS
(HX)			CAPACITY	HEAT TRANS.	FACTOR FOR	FUTURE	FLUID	FLOW	EWT	LWT	PD	DESIGN	FLUID	FLOW	EWT	LWT	PD	DESIGN	WIDTH	HEIGHT	LENGTH	
\sim			(MBH)	AREA MIN.	FOULING	PLATE CAP.		(GPM)	(°F)	(°F)	(FT)	PRESSURE		(GPM)	(°F)	(°F)	(FT)	PRESSURE	MAX	MAX	MAX.	
				(FT ²)	(%) (1)	(2)						(PSIG)						(PSIG)	(FT)	(FT)	(FT)	
	DANIELS	PLATE & FRAME	1500					150					30% GLY.	150	180	200	3					HEATING
	DANIELS	PLATE & FRAME	1500					150					30% GLY.	150	180	200	3					HEATING
	DANIELS	PLATE & FRAME	340					32					30% GLY.	32	180	200	1.2			1		SNOWMELT I ERNATIONA
																					1-)	DISTRICT ENERG
r i						11														1		ASSOCIATION

Plant Conversion

WORKSHOPS | Thermal Distribution: March 2 | Microgrid: March 16

System Comparisons

Annual Operating Costs

■ Fuel Costs (\$)

■ Chemical Treatment Costs (\$)

Annual Emissions (tonnes CO2e/yr) (Today)

- Electric Costs (\$)
- Maintenance Distribution Piping/Bldg. (\$)
- Annual Emissions (tonnes CO2e/yr) (2050)
- Water Costs (\$)

Maintenance - Plant Equip (\$)

Conversion Capital Estimate

\$35,000,000 \$28,650,200 \$30,000,000 \$25,000,000 \$19,245,000 € \$20,000,000 អ្ន ខ្ល \$15,000,000 \$10,000,000 \$5,492,800 \$5,000,000 \$-Steam Boilers + Distribution Hot Water Generators + Hot Water Heat Pump + Hot Water Distribution Distribution (Baseline) ■ Distribution Costs (\$) Building Conversion Costs (\$) Plant Modification Costs (\$)

Conversion Cost Estimates

WORKSHOPS | Thermal Distribution: March 2 | Microgrid: March 16

Study Findings

Hot Water Generator

- 1. No return on investment in comparison to BAU
- 2. \$998/MTCDE Net present cost

Heat Pump

- 1. Return on investment possible when paired with campus chilled water production and need for steam system deferred maintenance
- 2. \$372/MTCDE Net present cost

Study Recommendations

1. Continue funding excellent steam system maintenance

- 2. Inventory Building Loads and Install Building Meters
- 3. Building Energy Audits
- 4. Develop action plan for low carbon emissions campus heating solutions
- 5. Develop campus design standards to support electrified utilities
- 6. Pursue study to electrify campus thermal utilities
- 7. Investigate potential heat sources

Change in Emissions & Campus Size

Projected 2021 Campus Carbon Emissions

Next Steps

- File for REC ownership for completed Solar PPA 2.2mW project.
- Not pursuing off-site PPA Xcel Energy commitment to carbon neutrality by 2050
- Address Scope 1 and 3 emissions
 - Natural gas consumption
 - Travel
 - Commuting
- Campus Growth: 3 new buildings (285,000 GSF) coming online in FY21
- Energy Master Plan for pathway to carbon neutrality
 - Student Government just passed a resolution for neutrality by 2030

Thank You

Lynn Bailey UNIVERSITY DENVER

Nate Taylor

Campus Energy 2021 BRIDGE TO THE FUTURE Feb. 16-18 I CONNECTING VIRTUALLY WORKSHOPS I Thermal Distribution: March 2 I Microgrid: March 16

Ŵ