TRIGENERATION AT UNIVERSITY OF MINNESOTA
INSTALLATION OF A MODERN ABSORPTION CHILLER & DISPATCHING STRATEGIES
OVERVIEW

PRESENTATION TOPICS

• Background
• Why Absorption?
• Laying Out the Project
• Carbon Footprint Reduction
• End Results
BACKGROUND

UNIVERSITY STEAM AND CHILLED WATER UTILITIES

- U of MN tri-generation system
 - Multiple co-gen heating plants
 - Multiple chilled water districts

- 2017 Project: 24MW Gas Turbine with Heat Recovery
 - Centerpiece of Trigeneration System

- Academic Health Sciences
 - Largest and most consistent chilled water user
 - Campus is fully developed in this district
 - Projects are usually retrofits within existing building envelopes
 - Outages of infrastructure in this mission critical area of campus are high impact and very infrequent
BACKGROUND

TRI-GENERATION WITH MAIN ENERGY PLANT

- MEP began commercial operation in 2017
- CHP 101: Match thermal and electric loads
- Campus Electric Peak Demand Reduction
 - Peak demand charges ~50% of annual campus electric costs

GE LM2500 DLE Dual Fuel
220 MMBtu/hr Input (HHV) 24 MWe Generator Output
Demand-Limiting Strategies
- Steam absorbers (~9,000 tons)
- Future steam turbine chillers (6,000 tons)
- Future inlet air cooling on MEP turbine (900 ton load, +2 MW output)
- Building mass thermal energy storage
- (Future) Traditional TES options, ice and/or chilled water storage
BACKGROUND

TRIGENERATION

MAIN ENERGY PLANT (MEP)

C

T

G

22 MW

GENERATED POWER

WASTE STEAM

FIRED STEAM

HRSG

DB

absorption chiller

CAMPUS STEAM DISTRIBUTION

CAMPUS ELECTRIC DISTRIBUTION

ABSORPTION CHILLER

CHILLED WATER

1,000 Tons

Natural Gas

COAL: 30%

NATURAL GAS: 14%

NUCLEAR: 30%

WIND: 16%

SOLAR: 2%

OTHER RENEWABLES: 8%

CONVENTIONAL CHILLER

XCEL ENERGY (2018)

PURCHASED POWER

CAMPUS ELECTRIC DISTRIBUTION

CENTRIFUGAL CHILLER

CHILLED WATER

1,000 Tons

NV5.COM | Delivering Solutions — Improving Lives
BACKGROUND

ACADEMIC HEALTH CHILLED WATER DISTRICT

- Moos Tower / PWB
 - 4 Absorption & 3 Centrifugal
 - Capacity Range: 1,000-1,500 tons/each
 - Total Installed Capacity: 8,575 tons
 - 1 new absorption chiller added
 - Steam supplied from main energy plant (MEP)

- Molecular & Cellular Biology Building (MCB)
 - 3 Centrifugal
 - 1,300 tons/each
 - 3,900 tons

Jared, this is shown in your P&ID, is it included in the total capacity of the Academic Health district?

- 1 Absorption
 - 1,200 tons

Total Capacity: 12,475 tons (Peak: 11,178 tons) **DOES'T INCLUDE K/E – REVIEW FEASIBILITY REPORT TO SEE IF K/E WAS INCLUDED**

Jared – anything we are missing out on here?
BACKGROUND

ADDITIONAL COOLING CAPACITY - PROJECT SCOPE

- Projected 1,000 tons of additional cooling capacity by 2020
- Internal feasibility study: chiller technologies and infrastructure
 - Rigging Challenges - Moos Tower mechanical room is 50' below grade
 - Limited space available
 - Minimal outage available
 - Maintain adequate access for all existing equipment
- Projects required to support new chiller:
 - Cross-over piping upgrades (chilled water and condenser water) required to maintain N+1
 - Replacement of existing chilled water pumps
- Adequate cooling tower capacity available for new chiller
Chiller Technologies

• The following chiller technologies were considered:
 - Electric centrifugal:
 • Insufficient electric feeder capacity,
 • **Negative** impact on campus peak electric demand charges
 - Steam turbine:
 • For this part of the system, would require staffing change, MN statute requires a licensed boiler operator on-site for start-ups
 - Absorption:
 • Peak electric demand reduction
 • Locational flexibility
 • University operators already have experience with this technology.
 • Deemed the best available technology for this application.
Lifecycle Cost Analysis

Alt.

<table>
<thead>
<tr>
<th>Capital Cost Subtotal</th>
<th>Annual Cost Subtotal</th>
<th>30 Yr Lifecycle Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Yr O&M Subtotal</td>
<td>30 Yr Grand Total (M rates)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Stage</th>
<th>Peak</th>
<th>Cogen</th>
<th>Baseload</th>
<th>Capacity</th>
<th>Energy</th>
<th>Variable</th>
<th>Total Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>1</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1400</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>#2</td>
<td>1</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1400</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>#3</td>
<td>1</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1400</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>#4</td>
<td>1</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1400</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>#5</td>
<td>2</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1400</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>#6</td>
<td>2</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1400</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>#7</td>
<td>2</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1400</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>#8</td>
<td>3</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1400</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>#9</td>
<td>3</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1400</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>

LCA of existing electric chiller (peak)

$5,175,844

LCA of new absorber (baseload)

$4,975,538

All costs in 2017 dollars
Chiller Procurement

• Clearances: Rigging and Final Location
• Disassembly and Reassembly requirements called out to accommodate available clearances.
LAYING OUT THE PROJECT

Chiller Selection

- Chiller RFP:
 - Pre-bid site walkthrough required for all vendors
 - Submit chiller performance (zero tolerance at full design load conditions)
 - Submit condenser and chilled water DPs

- Factory Performance Test
- On-Site Performance Test
Chiller Selection

- Broad Model BS400
- Design Conditions:
 - 1,000 tons capacity
 - Evaporator: 40º/58ºF
 - Condenser: 85º/97ºF
 - Inlet Steam Pressure: 125 psig, saturated
 - Steam Consumption: 8,385 lb/hr
 - COP: 1.4
 - Steam powered condensate pump
- Tube Materials:
 - Evaporator: Copper
 - Condenser: Cupronickel
 - Absorber: Cupronickel
 - HTG: Titanium
 - LTG: Cupronickel
LAYING OUT THE PROJECT

Equipment Install – Shaft Access
Moos Tower Chiller Layout and Installation

- Laser scan was essential for adequate clearance for piping, tube pull and chiller service
- Existing single stage absorption chiller was shifted 3’ to provide additional clearance
- Careful scheduling of outages, then proceeded with assembly
Chiller Performance Tests

• Witness performance test done at the Broad factory in China
 - NV5 was present

• Field performance test done upon completion of installation
 - Design capacity and peak performance were tested to zero tolerance
 - Part-load performance tested based on AHRI conditions
 - Field performance and tight metering specification included in RFP for chiller for OEM reference
Chiller Operation

- **Features of modern absorption chillers:**
 - Modern PLC’s are configured to ensure the absorption machine stays out of the crystallization zone
 - Automatically limits capacity on low entering water temperature
 - Modern machines have automatic purge systems to maintain vacuum
 - Improvements in steam control valves have allowed absorbers to react better to load changes
 - Tube metallurgy (CuNi, SS, titanium) have reduced tube issues and improved reliability

- **The absorbers are typically run at 80-90% load**
 - Maximizes equipment life (reduced HTG temp)
 - Lower entering tower water temperature reduces absorber capacity
 - Lower tower temp improves overall plant efficiency
END RESULTS

Lessons Learned

• Reassembly was more labor intensive than we had planned.

• Having a skilled contractor in place as a partner was key, especially given the tight physical constraints in all directions.

• We utilized a steam-powered condensate pump for this project. Finding adequate vertical clearance was a significant challenge.

• Laser scanning of the entire plant was a major time-saver in such a crowded plant

• Highly recommend detailing out each pipe support location when possible to avoid extra costs from field-routing

• Chiller delivery in -20F windchill is not fun. . .
ANNUAL CHILLER CO₂ EMISSIONS DEPENDS ON DISPATCH METHOD

Using Fired Steam: 0.418 kg CO₂/ T-HR

Using Centrifugal Chiller: 0.418 kg CO₂/ T-HR

XCEL ENERGY (2018)

COAL: 30%
NATURAL GAS: 14%
NUCLEAR: 30%
WIND: 16%
SOLAR: 2%
OTHER RENEWABLES: 8%

*Based on utility annual average CO₂ emissions of 0.365 MT CO₂/MWh, per Xcel CO₂ Emission Intensities 2018 and chiller efficiency of average fleet efficiency 0.515 kW/ton

NV5.COM | Delivering Solutions — Improving Lives
ANNUAL CHILLER CO₂ EMISSIONS DEPENDS ON DISPATCH METHOD

TRIGENERATION

MAIN ENERGY PLANT (MEP)

C T G

22 MW

GENERATED POWER

HRSG DB

Fired Steam

1,354,552 kg CO₂

VENTING WASTE STEAM

NATURAL GAS

CONVENTIONAL CHILLER

Xcel Energy (2018)

Coal: 30%

Natural Gas: 14%

Nuclear: 30%

Wind: 16%

Solar: 2%

Other Renewables: 8%

Purchased Power*

609,039 kg CO₂

CAMPUS ELECTRIC DISTRIBUTION

CENTRIFUGAL CHILLER

Chilled Water

1,000 Tons

OTHER RENEWABLES:

Wind: 16%

Solar: 2%

Other Renewables: 8%

*Based on utility annual average CO₂ emissions of 0.365 MT CO₂/MWh, per Xcel CO₂ Emission Intensities 2018 and chiller efficiency of average fleet efficiency 0.515 kW/ton

NV5.COM | Delivering Solutions — Improving Lives

COAL: 30%

NATURAL GAS: 14%

NUCLEAR: 30%

WIND: 16%

SOLAR: 2%

OTHER RENEWABLES: 8%

Chilled Water

1,000 Tons

CO₂ Emissions

CENTRIFUGAL CHILLER

Chilled Water

1,000 Tons

VENTING WASTE STEAM
ANNUAL CHILLER CO₂ EMISSIONS DEPENDS ON DISPATCH METHOD

MAIN ENERGY PLANT (MEP)

22 MW

GENERATED POWER

CAMPUS ELECTRIC DISTRIBUTION

WASTE STEAM
0 kg CO₂

CAMPUS STEAM DISTRIBUTION

ABSORPTION CHILLER

CHILLED WATER
1,000 Tons

NATURAL GAS

NATURAL GAS: 14%
NUCLEAR: 30%
WIND: 16%
SOLAR: 2%
OTHER RENEWABLES: 8%

COAL: 30%

XCEL ENERGY (2018)

Purchased Power*
609,039 kg CO₂

CAMPUS ELECTRIC DISTRIBUTION

CENTRIFUGAL CHILLER

CHILLED WATER
1,000 Tons

TRIGENERATION

USING WASTE HEAT ONLY: 0.00 kg CO₂/ T-HR

*Based on utility annual average CO₂ emissions of 0.365 MT CO₂/MWh, per Xcel CO₂ Emission Intensities 2018 and chiller efficiency of average fleet efficiency 0.515 kW/ton

NV5.COM | Delivering Solutions — Improving Lives
END RESULTS

Moos Chiller 13 Operation vs. MEP Operation

Absorbers operating with “free” steam (lbs/hr)
Campus Cooling CO2 Footprint Reduction

- MEP reduces UMN CO2 footprint by 25%
- Conservation measures and fuel source improvements have provided another ~15% reduction
- Venting waste steam while generating at MEP is economically favorable
- Absorption cooling with this waste heat has a 40% lower CO2 footprint and ~80% lower fuel cost vs electric centrifugal plant
- ➔ Abs. cooling is a key thermal load to balance our CHP system and maximizing value
- ➔ Every pound of steam saved on campus during summer improves cooling CO2 footprint
QUESTIONS?

JARED SATROM, PE
Principal Mechanical Engineer
Energy Management
University of Minnesota
satr0021@umn.edu
612.625.2865

MATT WOLF, PE
Senior Mechanical Engineer
NV5
matt.wolf@nv5.com
651.634.7232