Area Served
AOC Mission: Serve, Preserve, Inspire

AOC employees work every day to serve Congress and the Supreme Court, preserve America’s Capitol, and inspire memorable experiences for all who visit the buildings and grounds.
Who We Are

The AOC traces its beginnings to the laying of the Capitol cornerstone in 1793. Our work is rooted in a tradition of unique craftsmanship and ingenuity. 2,100+ employees work behind the scenes to oversee the infrastructure and facilities of the Capitol campus and support congressional operations.
What We Do

We care for 18.4 million+ square feet of facilities, 570+ acres of grounds and thousands of works of art. We oversee an annual budget of approximately $700 million per year and host 5 million visitors annually while serving 30,000 daily occupants around the clock to maintain the Capitol campus.
Project History

- Capitol Power Plant (CPP) in operation since 1910
 - Additional customers external to Congress
- Old boilers costly to maintain
- Cogeneration selected to address numerous concerns
- Contract vehicle selection
- Initial attempt
- Original design issues
• CPP still in need of means to execute solution
• AOC chose new path
 • Savings vs. performance?
• New vendor
• UESC: Washington Gas
 • EPC Contractor: Burns & McDonnell
UESC – “A Utility Energy Service Contract is a limited-source contract between a federal agency and serving utility for energy management services including energy and water efficiency improvements and demand-reduction services.” –US DOE

- Project capital cost includes UESC fee, paid for through energy savings

Total Project Value: $57M
Project Economics

- Initial Economic Evaluation
 - Energy & Dispatch Modeling Paired with Utility Rate Forecasts per NIST Handbook 135
Project Economics

- Present Value of Business-As-Usual Compared to UESC CHP
- Monte Carlo Analysis to Prove Project “Robustness”

AOC CHP ANALYSIS - LIFE CYCLE COST SUMMARY

<table>
<thead>
<tr>
<th>OPTION NO.</th>
<th>DESCRIPTION</th>
<th>FUNDING</th>
<th>INITIAL COST ($1,000)</th>
<th>NATURAL GAS ($1,000/YR)</th>
<th>ELECTRIC ($1,000/YR)</th>
<th>O&M ($1,000/YR)</th>
<th>TOTAL ($1,000/YR)</th>
<th>NATURAL GAS ($1,000/YR)</th>
<th>ELECTRIC ($1,000/YR)</th>
<th>O&M ($1,000/YR)</th>
<th>TOTAL ($1,000/YR)</th>
<th>PRESENT VALUE OF SAVINGS ($1,000)</th>
<th>NET PRESENT VALUE ($1,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASE</td>
<td>EXISTING BOILERS</td>
<td>---</td>
<td>10,693</td>
<td>8,660</td>
<td>143</td>
<td>19,496</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2A</td>
<td>ONE 8.0MW CHP SYSTEM</td>
<td>UESC</td>
<td>56,998</td>
<td>12,695</td>
<td>3,030</td>
<td>459</td>
<td>16,184</td>
<td>(2,002)</td>
<td>5,630</td>
<td>(316)</td>
<td>3,312</td>
<td>67,862</td>
<td>3,312</td>
</tr>
</tbody>
</table>

Gas Cost Factor (Relative to 2014 Cost)

- P10-P90
- EV
- MAX
- MIN
- EIA MAX
- EIA MIN

Exceedance Probability

- Number of Occurrences
- NPV, 2014 $Millions

NPV, 2014 $Millions

- 2015
- 2020
- 2025
- 2030
- 2035
- 2040

Gas Cost Factor (Relative to 2014 Cost)

- P10-P90
- EV
- MAX
- MIN
- EIA MAX
- EIA MIN

Exceedance Probability

- Number of Occurrences
- NPV, 2014 $Millions
Project Goals

- Power Production
 - 7.5 MW Nominal

- Steam Production
 - 100,000 PPH
 - 180 psi, saturated steam

- Natural Gas/No 2 Oil Backup

- Employed Existing Support Functions into the new program.

- Plant 100% Active during Construction
The System

- 7.5 MW Combustion Turbine
- 100 KPPH Watertube HRSG
- 2 Packaged Natural Gas Compressors
Architectural Considerations

► Historic Building
 • New Stack
 • Enlarge Door
 • Exterior Equipment Piping

► Neighborhood
 • Densely Populated
 • Residential Area
 • Noise Restrictions
Room for Growth
Other Constraints

• Intersecting Tunnels below the Turbine and HRSG
 • Micropiles and grade beams span tunnels
 • Vibration Monitors to protect Vintage Brick Sewage Tunnel (still active)

• Switchgear Replacement
 • 5 incoming feeders
 • Plant Active throughout
 • Season Limits for Change
Construction and Delivery Approach

► Integrated Design-Build Contract
 ◆ Washington Gas: Major Equipment
 ✔ Burns & Mac: Design & Construction

► Phased Design, Procurement & Subcontracting

► Union Project
WHY NOT ZERO?
Safety

⚠️ Challenges

⚠️ Restricted/crowded work areas
⚠️ Existing Live Plant Systems
⚠️ Critical Lifts
⚠️ Hazmat (lead-based paint, ACM, PCB)

🎉 Strategies

🎉 Shift work
🎉 Close collaboration with CPP Operations
🎉 Vigilant LOTO Program
🎉 Rigorous Lift Planning & Coordination
🎉 Layout and abatement of anchor points
🎉 Air monitoring
🎉 Behavior Based Safety Program (TSO’s)
🎉 Multiple Safety Managers
Safety Results:

✓ 180,000+ Craft Manhours

✓ Zero Recordables
Construction Challenges / Strategies

Challenges

- Operating Plant – No Service Interruptions
- Switchgear Replacement vs. Cooling Season ’17
- Heavy Demolition vs. Historic Tunnels
- Residential neighborhood
- Depleted local labor market
- Major Equipment vs. Historic Building
- Existing PCB HazMat

Strategies

- Pre-planning and coordination with scheduled outages
- Expedite equipment, Collaborate with utility, Phase the work
- Seismic Monitoring
- Use smaller equipment
- Robust, proactive communication plan
- Labor form outside DC
- Overtime
- Collaboration between AOC and Integrated Design-Build Team
- Work where we can, when we can
Results

- Everything Fit!
- UESC: Successful Approach for Congress
- Financially Advantageous
- Future Expandability
- No unscheduled interruptions
- First Fire occurred May 17, 2018
- Systems functioning as expected
- No complaints from the neighbors!
- Zero Recordables

😊 Happy Client!
Capitol Power Plant

Installation of the Heat Recovery Steam Generator and Combustion Turbine Generator

July 22nd and 23rd, 2017