NEW ENGLAND UNIVERSITY – STEAM TO HOT WATER CONVERSION STUDY

- 370 acres, 80 buildings, 2,400,000 GSF
- Existing District Heating System
 - (3) Natural gas boilers
 - 2 MW Nat Gas Recip Engine Cogen
 - Steam distribution network (1928-2015)
 - 95% of buildings hydronic
 - Small MTHW system feeding 3 buildings using cooling water circuit from cogen

NEW ENGLAND UNIVPROJECT OVERVIEW

Project Scope

1,600 foot oldest section of pipe from 1928 has considerable losses

Considering converting that section to HW feeding 8 buildings

7 Buildings already hydronic

Largest building uses steam and needs conversion:

- Heating AHU's and DHW
- Requires on demand steam boiler for kitchen services

Focus on this scope but expand to full campus using \$/sq ft

NEW ENGLAND UNIVERSITY RAMBOLL SCOPE

Establish heating demand for 8 buildings using square footage data and benchmark data for btu/sq ft

Plan routing and line sizing using Termis hydraulic model

Propose energy supply – Main ETS, hot water boiler, other??

Evaluate thermal storage

Capital cost estimate

Final report outlining options and recommendations

- Scope defined with 3 scenarios
 - Business as usual or status quo
 - Scenario 1 8 buildings fed by ETS in Central Plant
 - 1B extrapolated out to full campus

Table 1: Heat Demand

Description	No. of buldings	Estimated heat demand MWh/yr	Estimated heat demand MMBtu/yr
Included in the assessment	8	3,900	13,300
Crowell Concert Hall	1	2,100	7,200
Additional steam supplied buildings	20	20,100	68,500
Total		26,100	89,000

The relevant building heat demand addressed as part of this study is 20,500 MMBtu/vr.

- Scenario 2 8 buildings fed by natural gas fired hot water boiler
- Scenario 3 convert cogen HRSG to a hot water unit
 - Convert entire campus
 - Barriers identified that jeopardize Sc. 3
- CAPEX for all based on steam lines. abandoned in place - no demo

3			Base scenario - Initial Conversion	Scenario 1	Scenario 2	Base Scenario - Whole Campus	Scenario 3
١	Heat demand in buildings	MMBtu/yr	20,473	20,473	20,473	3700	100,600
	Fuel input	MMBtu/yr	36,559	26,938	23,145	187014	202,765
	Fuel costs, natural gas, year 1 in operation	1000 \$/yr	167	123	106	856	928
	Production of electricity	MWh/yr	NA	NA	NA	2246	20,275
	Purchase of addtional electricity	MWh/yr	NA	NA	NA	18029	-
	Var O/M Costs energy plant, year 1 in operation	1000 \$/yr	30.6	22.6	14.5	165	147
	Var O/M Costs network, year 1 in operation	1000 \$/yr	31.2	6.0	6.0	144	25
	Total investments excl. residual value	1000\$	1,491	1,573	1,701	1491	7,929
	Carbon footprint in year 1 (tons metric)	tons CO2/yr	1,940	1,429	1,228	12979	10,765
	Net present value of costs, 20 years	1000\$	4,199	3,348	3,082	32784	21,923

Table 1: Key Economic Information from Analysis

		Base scenario - Initial Conversion	Scenario 1	Scenario 2	Base Scenario - Whole Campus	Scenario 3
Heat demand in buildings	MMBtu/yr	20,473	20,473	20,473	3 7 00	100,600
Fuelinput	MMBtu/yr	36,559	26,938	23,145	187014	202,765
Fuel costs, natural gas, year 1 in operation	1000 \$/yr	167	123	106	856	928
Production of electricity	MWh/yr	NA	NA	NA	2246	20,275
Purchase of addtional electricity	MWh/yr	NA	NA	NA	18029	-
Var O/M Costs energy plant, year 1 in operation	1000 \$/yr	30.6	22.6	14.5	165	147
Var O/M Costs network, year 1 in operation	1000 \$/yr	31.2	6.0	6.0	144	25
Total investments excl. residual value	1000\$	1,491	1,573	1,701	1491	7,929
Carbon footprint in year 1 (tons metric)	tons CO2/yr	1,940	1,429	1,228	129 7 9	10,765
Net present value of costs, 20 years	1000\$	4,199	3,348	3,082	32784	21,923

Table 1: Summary of Demand and Production

Description	Unit	Steam system	Hot water system	
Scenarios 1 and 2				
Demand incl. hot water	MMBtu/yr	13,204	13,204	
Losses in distribution system		30%	5%	
Production demand from unit	MMBtu/yr	18,863	13,899	
Annual fuel savings	MMBtu/yr		4,964	
Scenario 3				
Demand incl. hot water	MMBtu/yr	89,000	89,000	
Losses in distribution system		30%	5%	
Production demand from unit	MMBtu/yr	127,143	93,684	
Annual fuel savings	MMBtu/yr		33,459	

Table 1: Heat Recovery Information Received from Jenbacher

	Water	Exhaust	Units
Exhaust Gas Flow		30754	#/Hr
Exhaust Gas Temp. 'entering'		784	°F
Exhaust Gas Temp. 'exiting' (clean)		248	°F
Recoverable H/T Circuit Heat		3899000	BTU/Hr
Recoverable Exhaust Heat		4391690	BTU/Hr
Total Recoverable Heat		8290690	BTU/Hr
Exhaust Side Pressure Drop (Enalco)		4.96	in. wc
# of Passes		1	-
% Glycol	50		%
Water Side Flow	459		GPM
Water Inlet Temp (To Engine)	158		°F
Water Inlet Temperature (To Enalco)	177.5		°F
Water Exit Temperature (From Enalco)	199.5		°F
Water Side Pressure Drop (Enalco)	1.8		PSIG

Table 1: Investment Costs

		Scenario 1	Scenario 2	Scenario 3
New ETS systems in buildings (water / water)	1000\$	263	263	1,244
New centralized ETS (Steam / water)	1000\$	139		656
Internal building conversion of Centre	1000\$			318
Steamer in Centre for process heat	1000\$			21
Investments in steam boilers	1000\$			-
Investments in heat only boilers	1000\$		240	-
Tank thermal energy storage	1000\$			100
Convertion to hot water on engine	1000\$			586
Conversion to hot water system	1000\$	1,200	1,200	5,004
Refurbishment of steam system	1000\$			-
TOTAL CapEx excl. residual value	1000\$	1,601	1,703	7,929

- Recommended next steps
 - Select 1 or 2 preferred scenarios
 - Hourly modelling in energyPRO to ensure lowest possible costs when heating, cooling, and electricity is integrated
 - Preliminary design of the system
 - Cost benefit analysis incl. CAPEX and OPEX estimates +/- 10%
 - Meeting with WU 1/25/18

- Conduct analysis to provide a greater degree of details for the following:
 - Full conversion to hot water
 - Co-production of heating / electricity
 - Inclusion of thermal storage
 - Potential co-production of heating / cooling. Potential seasonal storage
 - Implementation and phasing of a hot water network
 - More details of the potential trench of the hot water network
 - CapEx to a higher degree based on local prices working with contractor

