Thermal Energy Storage at Rockefeller Center

Will Kain PE, CEM, LEED AP BD+C **Gregg Fischer** PE, CEM, LEED AP O+M

Outline

- Why thermal energy storage (TES)?
- Rockefeller Central CHW System
- 45 Rockefeller Chiller & Thermal Storage Plant
- Modes of Operation
- Lessons Learned
- Q&A

Why Energy Storage?

Reduced utility costs due to peak shifting

Why Energy Storage?

Reduced utility costs due to peak shifting

Why Energy Storage?

- Utility incentive programs
 - Demand Response Rebates
 - NYISO ICAP/SCR (day-ahead notification)
 - Con Edison CSRP (minimum 2 hours ahead notification)
 - Con Edison DLRP (day-ahead notification)
 - Rebate payments combine for approximately \$210 per kW enrolled per summer
 - Capital Project Rebates
 - Con Edison Demand Management Program (DMP)
 - Awards up to \$2,500 per kW of demand reduction

Con Ed Demand Management Program (DMP)

Project Type	2019 Incentive Rate (\$/kW)	Project Cost Incentive Limit	Project Installation Deadlines to Qualify for Incentive			
Thermal Storage	\$2,520/kW	Up to 70%	August 15			
High Efficiency Electric Chiller	\$1,620/kW	Up to 70%	November 15			
HVAC	\$1,620/kW	Up to 70%	November 15			
BMS Controls	\$1,620/kW	Up to 70%	November 15			
Lighting Controls	\$1,620/kW	Up to 70%	November 15			
Demand Response Enablement – Controls	\$1,440/kW	Up to 70%	November 15			
Steam Turbine Chiller, Double Stage Absorption Chiller, Gas Driven Chiller*	\$1,440/kW	Up to 70%	November 15			
Steam Turbine Chiller Control Panel for Improved Efficiency*	\$720/kW	Up to 70%	November 15			
Single Stage Absorption Chiller*	\$720/kW	Up to 70%	November 15			
Battery Storage	\$1,620/kW	Up to 70%	November 15			
Demand Response Enablement - Generation	\$720/kW	Up to 70%	November 15			

Thermal Storage

- HVAC makes up a significant portion of commercial building energy costs in summer months
- Need a CHW/glycol loop system to implement TES
- Pumping losses if in separate circuit
- Longer life cycle (30 yr)
- Low temperature CHW supply reduces secondary HVAC fan loads and extends free cooling hours

Battery Storage

- Can serve site during grid outage
- Serves diverse loads (not just HVAC)
- Hazardous waste disposal from batteries (Lithium ion, etc)
- Inverter/transformer losses
- FDNY permitting roadblocks in NYC

Rockefeller Center CHW Loop

- Rock Center cooling loads served by a central chilled water (CHW) loop
- Peak daytime cooling load is approximately 10,000 tons
- 30 Rock Central Chiller Plant serves 14 buildings with primary/secondary/tertiary pumping system with 14,500 tons of installed chiller capacity.

Radio City Music Hall

30 Rock (Central Plant – in Basement)

45 Rockefeller Center Chiller Plant

- 45 Rock Chiller Plant rebuilt in 2018
- 2,500 tons electric centrifugal chillers
- 1,200 ton electric centrifugal ice chiller
- 12,000 ton-hr ice storage plant
- Serves 45 Rock and 50 Rock buildings
- Import capability from Central Plant Loop via CHW plate & frame HX
- Export capability from ice storage plant

45 Rockefeller Center Chiller Plant

- 2 x 1,250 ton electric centrifugal "day" chillers
 - 40° F / 54° F CHW
 - Low supply temp reduces AHU fan energy, captures additional latent load, and extends ΔT
 - Oversize 10^o F ΔT evaporator and condenser bundles allow additional flow for operational flexibility
- 1 x 1,200 ton electric centrifugal glycol chiller
 - Next-gen HCFO-1233zd(E) refrigerant carries zero ODP and extremely low GWP (<5) as compared with R-123 (77)
- All chillers can operate on either 45 Rock cooling towers or 50 Rock cooling towers for operational flexibility

45 Rockefeller Center Chiller Plant

- Approximately 0.3 kW/ton improvement over previous chillers
- Previous chillers were 480V and 208V; one (1) day chiller and the ice chiller run at 4160V (40% reduction in daytime utility electrical demand charges)
- Future pump energy reductions are expected
 - Demand side control valves

Construction Schedule

- Accelerated 5-month design/build construction schedule
 - July 2017: Feasibility Study and DMP Application
 - November 2017: Design release
 - December 2017: Demolition and equipment pre-purchase
 - January 2018: Contractor RFP's released from 50% DD
 - April 2018: Chillers ship, make-ready work
 - May 2018: Instant swing over to new variable primary pumping
 - June 2018: Day chillers online
 - August 2018: Ice system online, post M&V and DMP testing
 - September 2018: Awarded DMP incentive

45 Rock CHW System

Ice Storage Tanks

- Ice-on-Coil type tank
- Each tank contains spiral wound heat exchanger tubes in close proximity
- Counterflow design builds and melts ("burns") ice evenly across the mats and the tank as a whole

Ice Storage Tanks

- Each tank approx. 8' diameter
 - Two sizes utilized due to headroom constraints:
 - (30) x 8 foot tall tanks \rightarrow
 - (31) x 11 foot tall tanks
- Tanks connected in parallel in branch groups of 1-3
- Reverse return piping for hydraulic balancing – first tank supplied is last tank returned

Ice Storage Tanks

- Each tank approx. 8' diameter
 - Two sizes utilized due to headroom constraints:
 - (30) x 8 foot tall tanks
 - (31) x 11 foot tall tanks \rightarrow
- Tanks connected in parallel in branch groups of 1-3
- Reverse return piping for hydraulic balancing – first tank supplied is last tank returned

Ice Storage Tank Layout

CampusEnergy2020 THE POWER TO CHANGE FEBRUARY 10-14 4 SHERATON DENVER DOWNTOWN A DENVER. CO

Ice Storage Plant Operation – Build Mode

- Glycol chiller RM-3 supplies 22°F glycol to ice tanks, freezing the water inside
- Build ends when glycol return temperature from tanks reaches 28°F
- Do not overbuild freezes water over HX intended to allow expansion during freezing ("ice cap"), causing shortage of water around HX coils and impairing performance
- Low overnight temperatures improve chiller efficiency

Ice Storage Plant Operation – Burn Mode

- CHW flow control through Ice HX drives ice burn rate
- Higher glycol return temperature to tanks (HX outlet) extends ton hour capacity of tanks

Ice Storage Plant Operation – Day Mode

- Ice Chiller runs as normal chiller
- Some flow may divert through ice bank to meet blended supply temperature setpoint
- Mode not utilized unless one or more day chillers are out of service on peak summer day

CampusEnergy2020

DISCHARGE RATE, TONS (Q)

DESIGN DAY SYSTEM ANALYSIS

CHILLER SYSTEM S SYSTEM F FLOW (GP	UPSTRE SUPPLY RETURN PM) :	EAM TEMPERA TEMPERA DIS CHA	– SE TURE (F TURE (F CHARGE RGE	CRIES FL) = 42) = 52 = 56 = 36	OW .0 .0 86 00	NO NU PE DE	MINAL MBER O RCENT LTA P	CHILLE F TANK ETHYLE (PSI)	R SIZH S = 5 NE GI :	57 M LYCOL DISCHAR CHARGE	= IODEL = :GE = =	1767 1220 25.0 12.1 7.1	
HOUR & LOAD TYPE TONS	CHLR TONS	STRG TONS	TANK TONS	TONHRS TOTAL	TONHRS PER TANK	% CHRG	CHLR TEMP	REQD STRG TEMP	AVLB MIN TEMP	RTRN TEMP	GPM PER TANK	PD PSI	FЦG
1 т 0	1000	1000	01 1	6000	105 4	40.0	22.0	21 4	21 4	21.4	62.0	7 1	
	1202	1202	21.1 21.1	5008	105.4	42.2 50.6	22.8	31.4 31.2	31.4 31.2	31.4	63.2	/.⊥ 7 1	
2 I 0 3 I 0	1202	1202	21.1	8411	147 6	59 0	22.0	30.8	30.8	30.8	63.2	7 1	
4 T 0	1202	1202	21.1	9612	168.6	67.5	21.7	30.3	30.3	30.3	63.2	7.1	
5 I 0	1202	1202	21.1	10814	189.7	75.9	21.0	29.7	29.7	29.7	63.2	7.2	
6 I 0	1202	1202	21.1	12016	210.8	84.3	20.2	28.8	28.8	28.8	63.2	7.2	
7 F 0	0	0	.0	12016	210.8	84.3	42.0	42.0	32.0	42.0	.0	.0	
8 F 0	0	0	.0	12016	210.8	84.3	42.0	42.0	32.0	42.0	.0	.0	
9 F 0	0	0	.0	12016	210.8	84.3	42.0	42.0	32.0	42.0	.0	.0	
10 F 0	0	0	.0	12016	210.8	84.3	42.0	42.0	32.0	42.0	.0	.0	
11 F 0	0	0	.0	12016	210.8	84.3	42.0	42.0	32.0	42.0	.0	.0	
12 F 0	0	0	.0	12016	210.8	84.3	42.0	42.0	32.0	42.0	.0	.0	
13 F 0	0	0	.0	12016	210.8	84.3	42.0	42.0	32.0	42.0	.0	.0	
14 F 2200	0	-2200	-38.6	9816	172.2	68.9	52.0	42.0	36.0	52.0	62.3	6.3	
15 F 2200	0	-2200	-38.6	7616	133.6	53.4	52.0	42.0	38.2	52.0	72.1	7.7	
16 F 2200	0	-2200	-38.6	5416	95.0	38.0	52.0	42.0	39.9	52.0	82.1	9.1	
17 F 2200	0	-2200	-38.6	3216	56.4	22.6	52.0	42.0	41.8	52.0	97.8	11.7	
18 F 0	0	0	.0	3216	56.4	22.6	42.0	42.0	35.4	42.0	.0	.0	
19 F 0	0	0	.0	3216	56.4	22.6	42.0	42.0	35.4	42.0	.0	.0	
20 F 0	1000	1000	.0	3216	56.4	22.6	42.0	42.0	35.4	42.0	.0	0	
21 I 0	1202	1202	21.1	1202	21.1	8.4	23.3	31.9	31.9	31.9	63.2	7.1	
	1202	1202	21.1 21.1	2403	42.2	10.9 10.9	23.2	31.0 21.7	3⊥.8 21 7	31.8 21.7	63.2	7.1	
23 I 0 24 T 0	1202	1202	21.1	4806	84 3	23.3	23.1	31 6	31 6	31 6	63.2	7 1	

Existing Chilled Water Demand July 13, 2017 89°F (DB), 81°F (WB)

-Existing kW

Chilled Water kW

Typical Summer Day Post 45 Rock Plant Rebuild

DR Day Post 45 Rock Plant Rebuild

Chilled Water kW

Ice Storage Review & Lessons Learned

• Surge

- Max 90 F leaving CWR temp
- Oversize condenser bundles
- Footprint = \$\$\$ especially in cities
- Utility Capital Incentives
 - Can make/break ROI even with high utility costs

Ice Storage Tips & Lessons Learned

- Insulation 1.5" minimum for glycol
- Reverse return piping for hydraulic balancing first tank supplied is last tank returned
- Complete **full burn** prior to building more ice.
- Design for **low approach** over HX to widen ice delta T, boost ice bank capacity, reduce pumping.

Ice Storage Review & Lessons Learned

- Warming cycle over your glycol-CHW HXs heat the trapped cold glycol
- Leave HX glycol valves open after burn cycles
- Include **glycol management system** to maintain system pressure and glycol concentration, with eye wash station nearby
- Every two years, replenish biocide in water tanks after full tank burn
- ASHRAE 15 refrigerant monitoring and exhaust apply normally at chillers
 - Configure refrigerant monitor for each refrigerant type employed

Thank You!

Will Kain PE, CEM, LEED AP BD+C

Gregg Fischer PE, CEM, LEED AP O+M

