Endless Possibilities with an Overlooked Cooling Technology

Oscar Peraza
Regional Product Manager- Chillers
Johnson Controls
Learning Objectives

- Understand the advances in absorption cooling/heating technology
- Explore new possibilities to deliver resilient and clean cooling/heating
- Seeing past perceived limitations of absorption chiller technology
Outline

- Absorption Cooling Technology Overview
- Cost Efficiency, Flexible Operation, Enhanced Reliability
- The applications for absorption chillers are endless
- Recap
How it Works?

1. Liquid refrigerant water evaporates taking away heat from chilled water passing through the tubes. Liquid refrigerant turns into refrigerant water vapor.

2. Lithium Bromide salt solution ABSORBS the refrigerant water vapor.

3. Lithium Bromide solution is heated to release the refrigerant water that was absorbed previously in the absorber. Concentrated LiBr solution returns to the absorber.

4. Refrigerant water vapor is condensed to liquid refrigerant state to be returned to the evaporator.
Absorption Cooling Technology Overview

- **Sustainability – Truly Green Solution**
 - Water as the refrigerant, Lithium Bromide salt solution as the absorbent
 - Driven by waste heat
 - Steam, hot water, exhaust gas
 - Low cost natural gas/light oil
 - Helps reduce electric and water costs, reduced emissions

- **Reliability**
 - Around for last 75 years
 - Continued advancements in technology
 - Improves resiliency by not relying on the congested electric grid

- **Suitable for variety of applications**
 - Commercial, industrial, marine, CHP, district cooling heating applications, grow farms
Absorption can be the Right Solution for Many Problems

- Problems that absorption chillers can solve:
 - Searching for a refrigerant that is non-toxic, non-flammable, and GWP=0
 - Maintain high boiler utilization in the summer to maintain efficiency
 - Avoiding high electric demand costs during the summer
 - Capability to switch to lowest cost fuels on-the-fly to meet cooling needs
 - Lower cooling costs by utilizing waste heat from engine or turbine generators in CHP applications
Absorption Chillers are Cost Efficient

1. Typical Chiller COPs Assumed

<table>
<thead>
<tr>
<th>Electric Centrifugal Chiller</th>
<th>Direct Natural Gas Fired Absorption Chiller</th>
<th>Double Effect Steam Absorption Chiller</th>
<th>Single Effect Steam Absorption Chiller</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5</td>
<td>1.2</td>
<td>1.4</td>
<td>0.7</td>
</tr>
</tbody>
</table>

2. Natural Gas $ 5/MMBTU, Electricity $ 0.15/kWh, Steam $4 per 1,000 lb (450 Kg)

3. Ton-hour Operational Costs (US cents/ton-hour)

<table>
<thead>
<tr>
<th>Electric Centrifugal Chiller</th>
<th>Direct Natural Gas Fired Absorption Chiller</th>
<th>Double Effect Steam Absorption Chiller</th>
<th>Single Effect Steam Absorption Chiller</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.12</td>
<td>5.00</td>
<td>3.43</td>
<td>6.86</td>
</tr>
</tbody>
</table>

Example: Vermont Avg. Fuel prices
MMBTU = 1,000,000 Btu
Absorption Chillers Provide Flexible Operation

- Chilled water leaving as low as 23°F (-5°C) with Water-LiBr cycle
- Cooling (condenser) water temperature range 68°F (20°C) ~ 98.6°F (37°C)
- Excellent turndown 100% ~ 10%
- Flow rate variation 5% per minute or 50% of design over 10 minutes
- Flow rate flexibility

<table>
<thead>
<tr>
<th>Evaporator</th>
<th>1.3 ~ 2.9 gpm/ton</th>
<th>0.29 ~ 0.65 m³/h/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorber-Condenser (single effect)</td>
<td>3.0 ~ 8.0 gpm/ton</td>
<td>0.68 ~ 1.81 m³/h/ton</td>
</tr>
<tr>
<td>Absorber-Condenser (double effect)</td>
<td>2.2 ~ 6.0 gpm/ton</td>
<td>0.49 ~ 1.36 m³/h/ton</td>
</tr>
</tbody>
</table>
Enhanced Reliability
Key – Always Design With Less Salt %, More Water

- Always Design with Lower Lithium Bromide Salt Solution %
- Less Salt, More Water Keeps It Farther From Crystallization Zone
- Less Salt, More Water Makes It Easier To Boil
- Easier To Boil Means Lower Temperature and Pressure
- Lower Temperature and Pressure Means Lower Corrosion, Longer Life
Small Direct Gas Fired Chiller-Heater
Residential, Small Commercial Applications

- Chilled water 2.4 gpm/ton, 54/44°F, 30 ~ 100 tons
- Heater 128/140°F, typically 1 MMBTU/h
- Cooling water 4.0 gpm/ton (85/95°F)
- Modular
- Easy Installation With Fork Lift
- Split Shipment
- Outdoor Capable
Convention Center
Direct Gas Fired Absorption Chiller-Heater

- Convention center in a large city in China
- Total cooling capacity 7,275 tons
- Natural Gas Fired
 - Cooling COP 1.41 (LHV)
 - Heating COP 0.95
- Chilled water
 - 57.2/44.6°F
 - Flow 1.9 gpm/ton
- Heating water
 - 122/140°F
- Condenser water
 - 86/98.6°F
 - Flow 3.2 gpm/ton
District Cooling
Hybrid Plant – Steam Absorption + Electric Centrifugal

- Famous metro city in Japan
- Total cooling capacity: 25,840 tons
 - Steam driven absorption chillers 6,000 tons
 - Steam centrifugal 8,000 tons
 - Electric centrifugal 11,840 tons
- Ice thermal storage tank (23°F)
- Chilled water 55.4/42.8°F
- Condenser water 89.6/104°F
- Steam Source – gas fired boiler 118 psig
Airports – Steam Driven

- Several large airports in Asia
- 2,000 ~ 20,000 Tons Cooling
- Steam Driven
- Steam Source: Boiler and/or HRSG
1000 Tons (3516 KW) Direct Gas Fired + Hot Water (CHP) Driven Natural Gas Input Saved By ~ 25%

- Large private university in Japan
- Recycled sewage water is used as the condenser water

Supplemental Driving Hot Water From CHP (976 KW)

Natural Gas Burner (2020 KW)

Gas Engine CHP

Jacket Hot Water 3,333 MBH

Absorption Chiller

Electricity

Chilled Water 12,000 MBH

Natural Gas

6,900 MBH
500 Tons (1758 KW) Driven by Steam + Supplemental Hot Water
Steam Input Saved By ~ 15%

- Natural Gas
 - Gas Engine CHP
 - Electricity
 - Jacket + Solar Hot Water
 - 1,294 MBH
 - Steam from boiler
 - 3,560 MBH
 - Absorption Chiller
 - Chilled Water (6,000 MBH)

- Medical University Hospital in Japan
Hot Water Driven
Ideal for CHP (Gas Engine or Micro-Turbine)

- Typical Driving Hot Water
 - 209/194°F
 - 194/176°F or as low as
 - 203/131°F

- Large private university in Europe
- Driving heat source is hot water from a gas engine
Gas Engine CHP
Exhaust Gas + Hot Water

- Cooling Capacity 1436 Tons (5,050 KW)
- Chilled Water 65/54°F
- Condenser Water 90/100°F
- Exhaust Gas (CHP) 858/302°F
- Driving Hot Water (CHP) 192/162°F
- Back-up Natural Gas Burner

- Data Center Application
Leaving Evaporator As Low As 23°F (-5°C)
Breweries and Dairies

Typical Driving Heat Source Steam 100 ~ 125 psig or direct gas fired

Leaving Evaporator 23°F (-5°C)
CHP and Sustainability On Ocean!

- Innovative application withstanding rolling and pitching angles during the cruise
- Driving hot water 194°F from gas engine powering the ship
- Sea water cooled condenser, wide range of temperatures
- Avoiding dumping the waste heat in the ocean, thereby making the ship more sustainable
Absorption Heat Pump – Sustainable District Heating
1 ~ 40 MW Heating Capacity

Medium-temperature heating water supply
up to 95°C / 203°F for various applications

Condenser

High-temperature driving waste heat source such as steam
2–8 bar(g) / 30–120 psig or
Exhaust Gas / Direct Fired / Hot Water

Evaporator

Absorber

Return heating water from application

Exhaust Gas / Direct Fired / Hot Water
Low-temperature waste heat source
typically 30°C / 86°F – 50°C / 122°F
Recap

- Absorption Chillers Are Cost Efficient, Flexible and Reliable
- Deployed For Numerous Cooling and Heating Applications
- Low Carbon Cooling Heating Solution
Questions?

oscar.j.peraza@jci.com

IDEA > Events > Webinars (Past Webinars)

Absorption 101
Incorporating Absorption Technology in District Cooling and Heating
Myth Busters - Absorption Cooling