Endless Possibilities with an Overlooked Cooling Technology

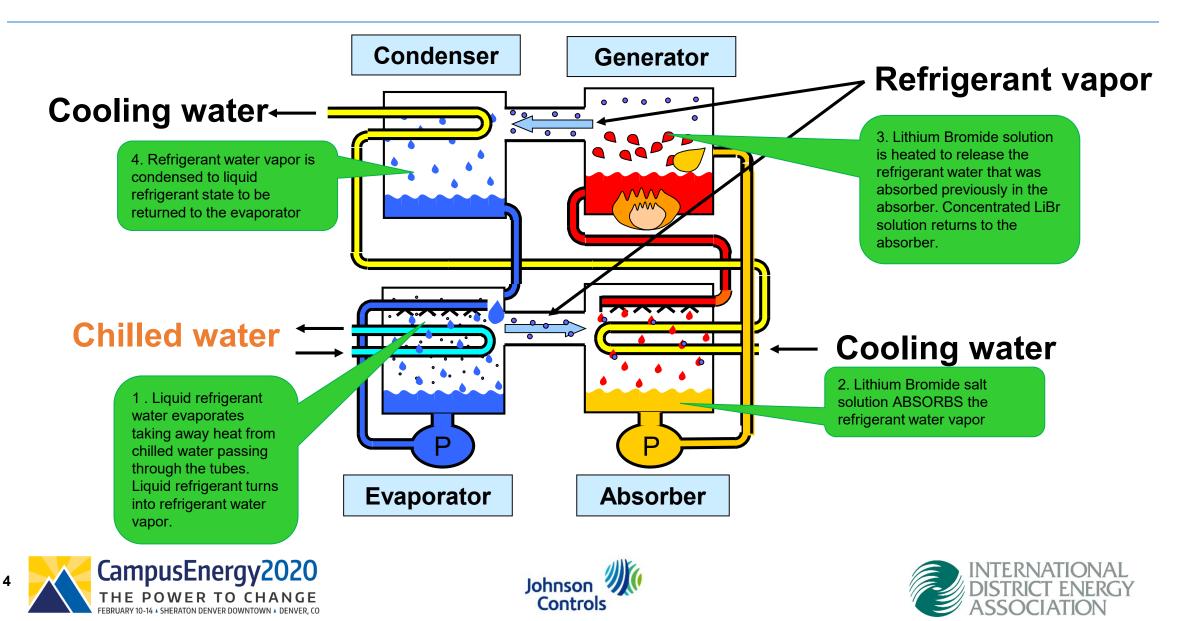
Oscar Peraza

Regional Product Manager- Chillers Johnson Controls

Learning Objectives

- Understand the advances in absorption cooling/heating technology
- Explore new possibilities to deliver resilient and clean cooling/heating
- Seeing past perceived limitations of absorption chiller technology

Outline


- Absorption Cooling Technology Overview
- Cost Efficiency, Flexible Operation, Enhanced Reliability
- The applications for absorption chillers are endless
- Recap

How it Works?

Absorption Cooling Technology Overview

Sustainability – Truly Green Solution

- Water as the refrigerant, Lithium Bromide salt solution as the absorbent
- Driven by waste heat
 - Steam, hot water, exhaust gas
 - Low cost natural gas/light oil
- Helps reduce electric and water costs, reduced emissions

Reliability

- Around for last 75 years
- Continued advancements in technology
- Improves resiliency by not relying on the congested electric grid

Suitable for variety of applications

Commercial, industrial, marine, CHP, district cooling heating applications, grow farms

Absorption can be the Right Solution for Many Problems

- Problems that absorption chillers can solve:
 - Searching for a refrigerant that is non-toxic, non-flammable, and GWP=0
 - Maintain high boiler utilization in the summer to maintain efficiency
 - Avoiding high electric demand costs during the summer
 - Capability to switch to lowest cost fuels on-the-fly to meet cooling needs
 - Lower cooling costs by utilizing waste heat from engine or turbine generators in CHP applications

Absorption Chillers are Cost Efficient

1. Typical Chiller COPs Assumed

Electric	Direct Natural Gas Fired	Double Effect Steam	Single Effect Steam
Centrifugal Chiller	Absorption Chiller	Absorption Chiller	Absorption Chiller
6.5	1.2	1.4	0.7

- 2. Natural Gas \$ 5/MMBTU, Electricity \$ 0.15/kWh, Steam \$4 per 1,000 lb (450 Kg)
- 3. Ton-hour Operational Costs (US cents/ton-hour)

Electric	Direct Natural Gas Fired	Double Effect Steam	Single Effect Steam
Centrifugal Chiller	Absorption Chiller	Absorption Chiller	Absorption Chiller
8.12	5.00	3.43	6.86

Example: Vermont Avg. Fuel prices MMBTU = 1,000,000 Btu

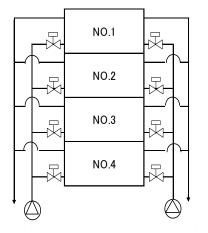
Absorption Chillers Provide Flexible Operation

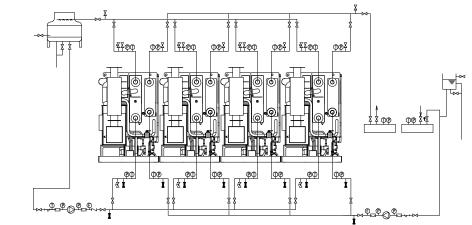
- Chilled water leaving as low as 23°F (-5°C) with Water-LiBr cycle
- Cooling (condenser) water temperature range 68°F (20°C) ~ 98.6°F (37°C)
- Excellent turndown 100% ~ 10%
- Flow rate variation 5% per minute or 50% of design over 10 minutes
- Flow rate flexibility

Evaporator	1.3 ~ 2.9 gpm/ton	0.29 ~ 0.65 m3/h/ton
Absorber-Condenser (single effect)	3.0 ~ 8.0 gpm/ton	0.68 ~ 1.81 m³/h/ton
Absorber-Condenser (double effect)	2.2 ~ 6.0 gpm/ton	0.49 ~ 1.36 m ³ /h/ton

Enhanced Reliability Key – Always Design With Less Salt %, More Water

- Always Design with Lower Lithium Bromide Salt Solution %
- Less Salt, More Water Keeps It Farther From Crystallization Zone
- Less Salt, More Water Makes It Easier To Boil
- Easier To Boil Means Lower Temperature and Pressure
- Lower Temperature and Pressure Means Lower Corrosion, Longer Life



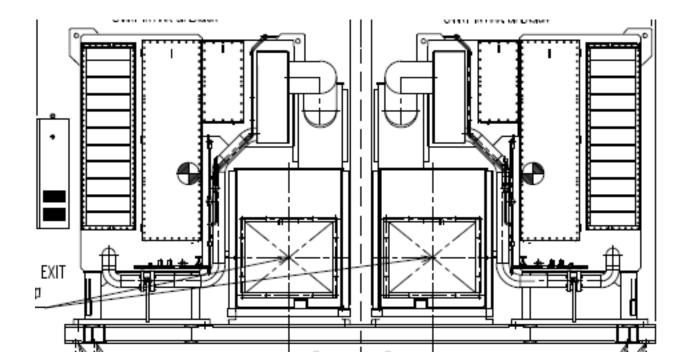


Small Direct Gas Fired Chiller-Heater Residential, Small Commercial Applications

- Chilled water 2.4 gpm/ton, 54/44°F, 30 ~ 100 tons
- Heater 128/140°F, typically 1 MMBTU/h
- Cooling water 4.0 gpm/ton (85/95°F)
- Modular
- Easy Installation With Fork Lift
- Split Shipment
- Outdoor Capable

Convention Center Direct Gas Fired Absorption Chiller-Heater

- Convention center in a large city in China
- Total cooling capacity 7,275 tons
- Natural Gas Fired
 - Cooling COP 1.41 (LHV)
 - Heating COP 0.95


Chilled water

- 57.2/44.6°F
- Flow 1.9 gpm/ton

Heating water

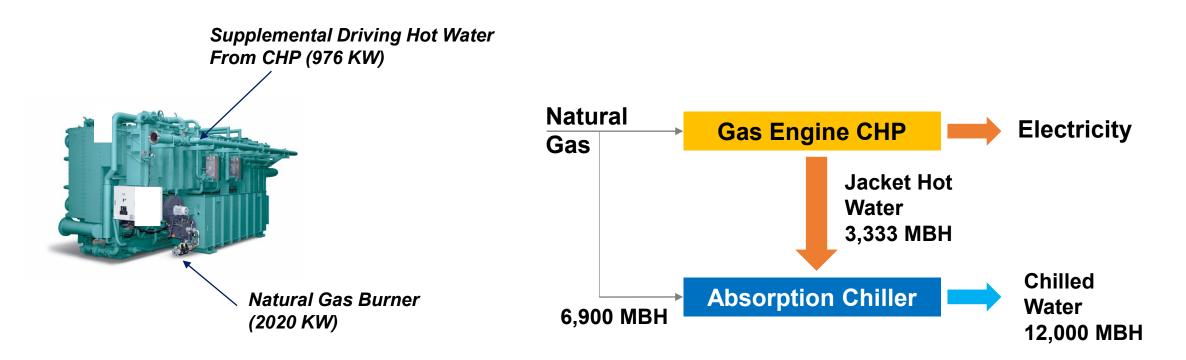
- 122/140°F
- Condenser water
 - 86/98.6°F
 - Flow 3.2 gpm/ton

District Cooling Hybrid Plant – Steam Absorption + Electric Centrifugal

- Famous metro city in Japan
- Total cooling capacity: 25,840 tons
 - Steam driven absorption chillers 6,000 tons
 - Steam centrifugal 8,000 tons
 - Electric centrifugal 11,840 tons
- Ice thermal storage tank (23°F)
- Chilled water 55.4/42.8°F
- Condenser water 89.6/104°F
- Steam Source gas fired boiler 118 psig

Airports – Steam Driven

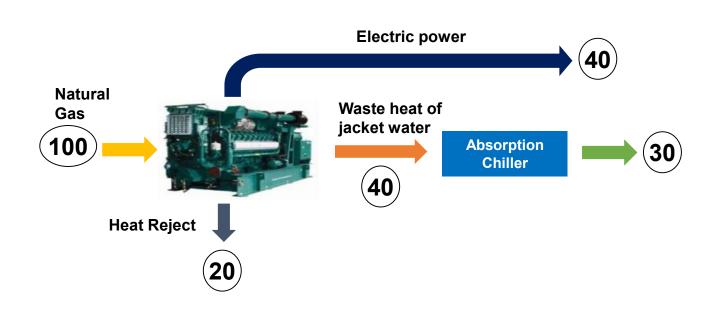
- Several large airports in Asia
- 2,000 ~ 20,000 Tons Cooling
- Steam Driven
- Steam Source: Boiler and/or HRSG



1000 Tons (3516 KW) Direct Gas Fired + Hot Water (CHP) Driven Natural Gas Input Saved By ~ 25%

- Large private university in Japan
- Recycled sewage water is used as the condenser water

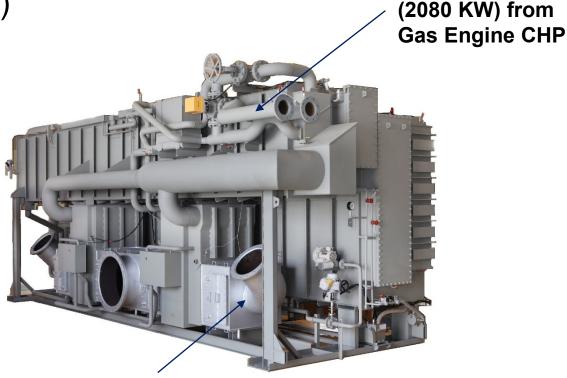
500 Tons (1758 KW) Driven by Steam + Supplemental Hot Water Steam Input Saved By ~ 15%


Medical University Hospital in Japan

Hot Water Driven Ideal for CHP (Gas Engine or Micro-Turbine)

Large private university in Europe

- Typical Driving Hot Water
 - 209/194°F
 - 194/176°F or as low as
 - 203/131°F
- Driving heat source is hot water from a gas engine

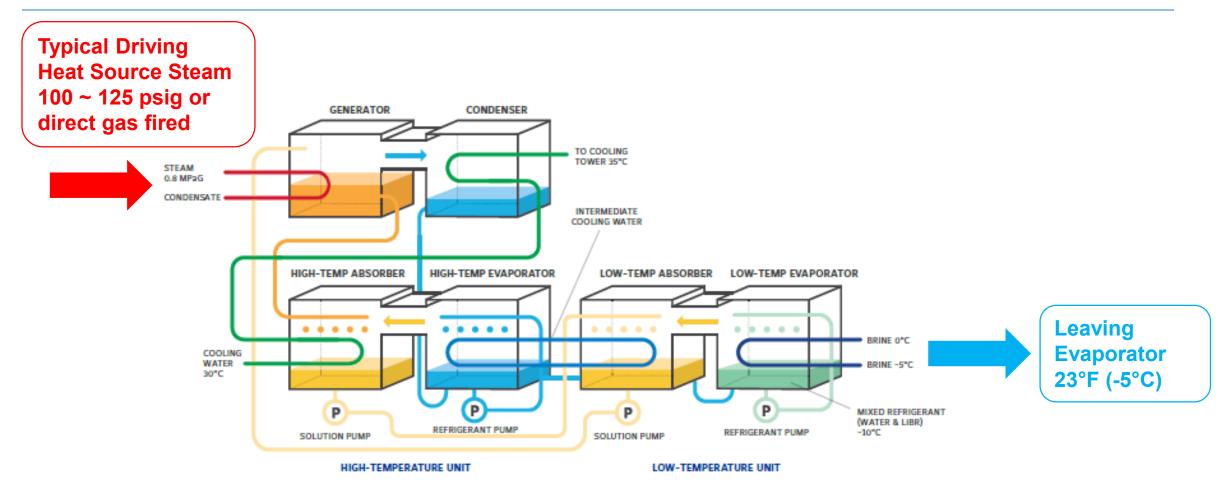


Gas Engine CHP Exhaust Gas + Hot Water

- Cooling Capacity 1436 Tons (5,050 KW)
- Chilled Water 65/54°F
- Condenser Water 90/100°F
- Exhaust Gas (CHP) 858/302°F
- Driving Hot Water (CHP) 192/162°F
- Back-up Natural Gas Burner

Data Center Application

Exhaust Gas (2488 KW) from Gas Engine CHP

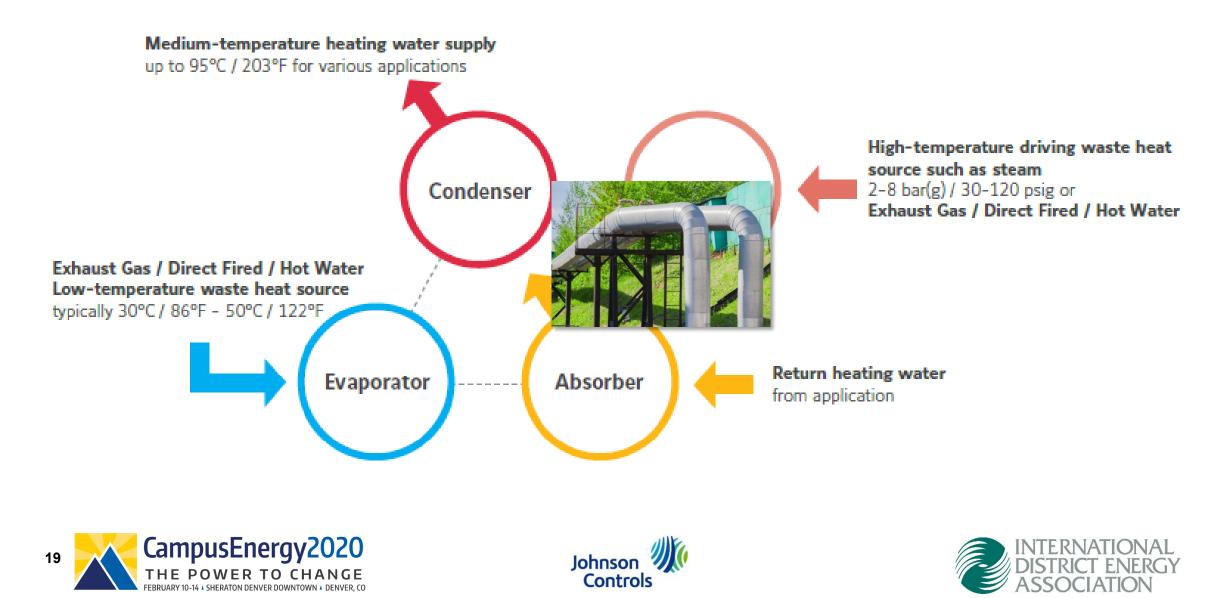


Jacket Hot Water

Leaving Evaporator As Low As 23°F (-5°C) Breweries and Dairies

CHP and Sustainability On Ocean!

- Innovative application withstanding rolling and pitching angles during the cruise
- Driving hot water 194°F from gas engine powering the ship
- Sea water cooled condenser, wide range of temperatures
- Avoiding dumping the waste heat in the ocean, thereby making the ship more sustainable



Absorption Heat Pump – Sustainable District Heating 1 ~ 40 MW Heating Capacity

Recap

- Absorption Chillers Are Cost Efficient, Flexible and Reliable
- Deployed For Numerous Cooling and Heating Applications
- Low Carbon Cooling Heating Solution

IDEA > Events > Webinars (Past Webinars)

Absorption 101

Incorporating Absorption Technology in District Cooling and Heating

Myth Busters - Absorption Cooling

