Campus Energy 2021 BRIDGE TO THE FUTURE Feb. 16-18 | CONNECTING VIRTUALLY WORKSHOPS | Thermal Distribution: March 2 | Microgrid: March 16

Enhancing Mission through Energy Assurance

> Kurt Koenig, HDR Mark Miller, HDR

> > FSS

Q&A Will Not Be Answered Live

Please submit questions in the Q&A box. The presenters will respond to questions off-line.

Campus Environments are the Backbone of the Infrastructure we Count on

They Support our Heath

They Educate our Children They all Require Energy to Operate They Provide Entertainment They Provide Goods and Services

They Protect our Way of Life

How do we Assure the Energy needed is Available?

- Energy Assurance DOD Perspective
 Air Force Evaluation Methodology
 Hazard and Threat Analysis
 Application of Resilient Strategies
 Mission Scorecard
- 6. Broad Process Value

Energy Assurance – A DoD Agency Perspective

Goal Intent Expected Outcome 1. Improve Resiliency Identify vulnerabilities to Improved responsiveness energy supplies, such as to disruptions to energy physical and cyber attacks supplies or natural disasters Increased ability to quickly Mitigate impacts from resume normal operations disruptions in energy and mitigate impact to the supplies to critical assets, mission installations, and priority Prioritized response plans missions and solutions to mitigate Develop ability to prioritize risks from the tail (logistics supply chain) and the resources against risks to tooth (energy demand in the mission operations) Advance physical and cyber security solutions Assured ability to provide to protect critical energy energy for mission-critical assets and secure function industrial controls systems 2. Optimize Demand Increase energy efficiency Decreased amount and operational efficiency of energy required by for Air Force systems Air Force systems and operations without Enhance capabilities by negative mission impacts focusing on the energy required to achieve the Air Increased flexibility, range, Force mission and endurance in all operations Build energy considerations into Matured long-term. Air Force research, focused solutions to Air development, test and Force energy challenges evaluation (RDT&E) efforts 3. Assure Supply Integrate alternative Access to clean energy sources of energy resources and supply compatible with mission chains based on asset and requirements mission priorities Diversify drop-in sources of Increased flexibility in all operations energy Increased ability to sustain Increase access to reliable and uninterrupted energy mission supplies

Air Force Energy Strategic Goals

What is Energy Assurance?

- Activities focused across three main categories to prepare for physical, natural and cyber threats
 - Preparation and Planning
 - Mitigation and Response
 - Education and Outreach
- All are focused on the goal of energy resiliency

 the ability to prepare for and recover from
 energy disruptions that impact mission
 assurance on military installations

DoD Energy Assurance Requirements

- **REQUIREMENT**: March 2016, OSD issued a memorandum requiring development of Installation Energy Plans (IEPs) at all DoD installations
- PURPOSE: To create a decision-making framework to assist in achieving an installation's energy goals and connect planning to operations
 - Incorporate long-range plans for energy resilience capabilities
 - Ensure available and reliable utilities for each installation's critical missions
 - > Define energy requirements for the mission

Approach to Installation Energy Plans

GOAL: Meet current and future demands to achieve mission assurance through energy assurance while integrating cybersecurity requirements into planning strategies by asking the following:

- Where are you now? (Baseline)
- What do you need to protect? (Requirements)
- How do you protect the mission? (Strategies)
- What are alternatives? (Scenario Development)
- How to make that happen? (The Roadmap)
- How do you communicate the plan? (Integration with Installation Development Plan)

Installation Energy Plan F.E. Warren, Cheyenne, Wyoming (F.E. Warren AFB) Final Submittal July 2020

Air Force IEP Development Roadmap

ENABLING RESILIENCE: Installation Energy Plans (IEPs) enable resilience by:

- Acting as a resource advocacy tool
- Aligning infrastructure requirements and investments to meet mission capability
- Ensuring airbase resiliency

BENEFIT: Installations are able to protect, respond, and recover from disruptions that degrade operations, allowing survivability, resiliency, and redundancy

The Evaluation Process

The Air Force developed a standardized framework and assessment tool focused on mission requirements as they apply toward the 5 R's

Resiliency Assessment Approach

Hazards and Threats Analysis

Installation Level

- Determine probability and severity of threats
- Assess threat consequences
- Result: Establishes target resiliency score specific to overall installation

	Probability	Severity
Earthquake	Occasional	Critical
EMP	Barely	Critical
Environmental Corrosion	Rarely	Negligible
Flooding - Major	Seldom	Moderate
Flooding - Minor	Occasional	Moderate
Righ Winds	Frequent	Critical
Lightning	Frequent	Moderate
Malicious - Cyber	Occasional	Moderate
Malicious - Physical	Seldom	Moderate
Tsunami	Barely	Negligible
Utility Blackout	Occasional	Critical
Volcanic Eruptions	Rarely	Negligible
Wildfire - Major	Seldom	Moderate
Winter Storm	Seldom	Moderate

THREAT CONSEQUENCES					
	Degree of Concern Recommended				
Source : Loss of Primary Sources	Moderate	Moderate			
Supply Logistics : Disruption / Failure	Moderate	Moderate Moderate			
Transmission : Failure / Loss	High				
Distribution : Failure / Loss	High	High			
Controls : Loss of Access	Low	Low			
Communications : Breakdown / Unavailable	High	Low			
Manpower : Unavailable / Inaccessible	Moderate	Moderate			
Equipment : Damaged / Inoperable	High	Low			

Mission

Mission Level

- Assess resource availability requirements
- Assess minimum contingency requirements
- Result: Establishes target resiliency score specific to mission

Uninterruptible	20111	
	21171	
7 Day Supply	N+1	
Essential	N	
Non-Essential	N+1	
No Requirement	na	
Essential	Ν	
Essential	N+1	
	7 Day Supply Essential Non-Essential No Requirement Essential Essential	7 Day Supply N+1 Essential N Non-Essential N+1 No Requirement na Essential N Essential N+1

ls Mission Relocatable?

No

Application of Resiliency Strategies

Application of Resiliency Strategies

							5Rs					RESC	OURC	E		
SCALE	CATEGORY	STRATEGY NAME	Weight	R1A	R1B	R2B	R3A	R3B	R4A R4B	RSA RSB	POWER	WATER	HEATING	COOLING	STRATEGY DESCRIPTION	
Building	Power Distribution	Adequate Electrical Circuit Condition (Building Level)	2		x		:	x			•				A facility may have inadequate electrical circuit condition if areas within the building face repeated circuit breaker openings or exhibit other power reliability issues, including fire concern. Repairing electrical circuits in poor condition improves reliability and reduces the likelihood of mission	
Building	Building Systems	Alternate Heat Generation (Building Level)	2			x		x					•		Diversifying the heating fuel source reduces reliance on a single supply line. This strategy is installing or upgrading building heating systems to work with multiple fuels. Example is installing an electric heating element or boilers that can work on both natural and propane gas	
Building	Backup Power	Backup Power for Critical Loads (Building Level)	5			x		x	x		•	-	-		Installing backup systems to ensure supply failure does not compromise an uninterruptable critical asset/function	
Building	Water	Backup Water Supply (Building Level)	3			x		x				•			If the main water utility supply to the facility fails, having a backup means to supply water can avoid a loss of mission function. This is especially true for facilities with critical water demands. Examples include local storage tank, secondary water pipe, or water buffalo connection.	
Building	Controls and Communications	Building Systems Monitoring	3	х					x		•	•	•	•	The monitoring of a building's energy system performance allows localized response to issues and optimization opportunities. This can highlight compromised equipment and reduce resource consumption.	
District	Building Systems	Cooling System Capacity (District Level)	2				X	x						•	Increasing the redundant capacity of a centralized cooling system to increase the available supply when there is a localized equipment fault.	
District	Power Distribution	District Microgrid	5		:	ĸ x	:	x	x						The U.S. Department of Energy defines a microgrid as "a group of interconnected loads and distributed energy resources within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid. A microgrid can connect and disconnect from the grid to enable it to operate in both grid-connected or island-mode." This strategy considers configuring a district within an installation into a microgrid, enabling greater functionality and more efficient use of resources to continue operations during a utility power outage. A microgrid requires appropriate cybersecurity measures.	
District	Building Systems	Thermal Energy Storage (District Level)	2			x	:	x					•	•	Thermal energy storage, such as ice, chilled water, or hot water storage, can provide backup supply during an outage. It can also be used to reduce peak load and save energy costs and reduce the design requirements for primary and backup power, helping the facility reach its required sustainment capacity. Applied at a district level this would be at a central cooling plant.	
Installation	Power Distribution	Adequate Electrical Transmission Condition (Installation Level)	3		x	ĸ	:	x			•				An installation's power transmission system may be in inadequate condition if sections of the system face repeated failure or reliability issues. Bringing the transmission system into adequate condition may include replacing aging (especially wooden) poles, replacing aging lines, or undergrounding lines where appropriate, thereby mitigating risk of fire, wind, wildlife, or physical damage.	
Installation	Power Distribution	Alternate Substation Connection	5		:	ĸ	:	х			•				This strategy considers connecting the base electrical distribution infrastructure to an alternative substation, whether the substation is existing or built specifically for this purpose. By connecting to an alternative substation, utility supply can be ensured if there is a failure in the primary substations.	
Installation	Energy Supply	Alternate Supply Paths (Natural Gas)	3		:	ĸ					•		•		A single point of failure in the natural gas supply means failure at one point causes disruption to all demand downstream. Installing natural gas lines in a looped configuration would allow gas supply to be rerouted to mitigate point failure. At the installation level, this includes multiple mains from the natural gas source. At the district level, this includes looped pipes downstream from any pressure-reducing stations that may be on base.	
Installation	Power Distribution	Alternate Supply Paths (Power) (Installation Level)	4		:	ĸ									A single point of failure in the power distribution means failure at one point causes disruption to all loads downstream of it. At an installation level this can be a single substation transformer or transmission line. Mitigation may require looping all distribution lines that come from the district substation, providing redundant feeders and distribution equipment, and using other strategies that enable alternate routes for power supply whenever an element of the transmission/distribution system fails.	
Installation	Water	Backup Power for Lift Stations (Storm/Sanitary Sewer)	1				:	x	x			•			If the installation relies on lift stations for storm and/or sanitary sewer distribution (e.g., not gravity fed), sewers can begin to back up during a power outage if the lift stations do not have backup power supply. Backup power can sustain lift station operation through an outage.	
Installation	Energy Management	Energy Management and Control Systems (Installation Level)	3				x		x		•				Installing an EMCS allows monitoring and control of energy systems at the building level at every major facility on the installation. This can enhance response time to system issues and increase sustainment time by curtailing non-critical loads.	
Off-site	Water	Alternate Wastewater Connection	3			x						•			An alternative domestic wastewater connection includes a connection to a nearby municipal wastewater treatment system. For installations relying exclusively on on-base treatment systems, this strategy can ensure access to wastewater treatment.	
Off-site	Energy Supply	Alternate/Renewable Energy Generation (Off Site)	1			x			x		•				This is a strategy to leverage near-site alternative generation capacity to provide an additional power supply source that can be sustained in the event of an outage. An example is the use of a landfill-gas generator located on an adjacent landfill.	
Off-site	Other	Contractor Emergency Availability Protocol (Energy)	3						x		•	•	•	•	If some or all of an installation's energy infrastructure is privatized, the contract or other supporting documentation should include provisions for the contractor's responsibility in cases of emergency. Examples include specified response times to failures or priority status in responding to disasters.	
Off-site	Water	Off-site Domestic Water Connection	3			x	:	x				•			An off-site domestic water connection includes a connection to a nearby municipal supply, especially when paired with a well field potable water supply, which can improve the water supply availability for the installation.	
Off-site	Energy Supply	Redundant Fuel Supply Routes (Off Site)	4		:	ĸ						•	•	•	Provide a redundant fuel supply route to the installation. For example, an installation may be able to supply fuel via truck or via rail. If one off-site supply route faces disruption, a redundant supply will ensure critical loads can be sustained until the primary supply is restored. This can include additional infrastructure, availability guarantees in contract, and alternate fuel contractor.	

Application of Resiliency Strategies

Resiliency Assessment – Mission Comparison

Resiliency Assessment – Mission Scorecards

Mission Resilience Scorecards

COA 1

COA 3

R1 ROBUSTNESS

R1A Cybersecurity of Energy Systems R1B Physical Hardening / Protection of Critical Assets

R2 REDUNDANCY

R2A Supply Path Alternatives in Energy and Water Systems R2B Energy and Water Source Diversity

R3 RESOURCEFULNESS

R3A Energy and Water Demand Reduction R3B Critical Loads Sustainment Capacity

R4 RESPONSE

R4A Emergency Management Protocols and Staff Training R4B Analytics, Smart Controls, and Islanding Capabilities

R5 RECOVERY

R5A Availability of Personnel for Assessment and Repair R5B Equipment, Parts, and Procurement

Campus Environments are the Backbone of the Infrastructure we Count on

They Support our Heath

They Educate our Children

They Provide Entertainment

They Provide Goods and Services

They Protect our Way of Life

Different Missions same Goals

Evaluation Process

- Clearly defined mission
- Defined set of evaluation criteria
 ✓ Quantifiable
 ✓ Repeatable
- Results highlight strengths and weaknesses
- Identify potential paths forward

Expansion of Criteria – Beyond the 5 R's

- Resilience
- Safety
- Sustainability
- Cost of Service
- Environmental, Social and Governance (ESG)
- Community Outreach and Support

Broad Application – Beyond AF and DoD

- Buildings in Mixed Use Developments or Urban Systems
- Manufacturing/Industrial facilities Compare locations
- Education Compare campus' within system and benchmark
- Hospitals under common ownership
- Big box stores and distribution facilities
- Transit agencies
- Data Centers

Summary

- DoD prioritized energy assurance
- The Air Force developed a repeatable process to evaluate installations
- This methodical approach can be used to evaluate and plan across a variety of:
 - Time horizons
 - Mission Criteria
 - Geographies

What Does Energy Assurance Mean to You?

Kurt Koenig Vice President Power Generation Kurt.Koenig@hdrinc.com

> 919-357-4159 **HDR**

Mark Miller Federal Power Practice Lead <u>Mark.Miller@hdrinc.com</u> 513-403-3732

FX

