

Maintaining energy efficiency and extending the service life of pre-insulated pipes with EVAL™ EVOH

Emilio Morales – Kuraray America, Houston Cynthia Teniers – EVAL Europe, Belgium Kristof Dedecker - Huntsman Polyurethanes, Belgium

Outline of presentation

- Function of Pre-insulated Pipes
- Current Challenges of Systems using HDPE Casings
- Introduction of High Gas Barrier EVOH
- Solution with Coextruded Casing Pipe with EVOH
- Aging Experiments with Coextruded Pipe with EVOH
- Summary

PUR pre-insulated pipe systems

Good mechanical strength & structural properties

Very low thermal conductivity (λ)

Withstand high temperature inside the service pipe for minimum 30 years

Current Challenges with HDPE Casings

Service life of pre-insulated pipe systems can be shortened by oxidative degradation of the PUR foam which can endanger the structural integrity of the pipe system

- Service pipe / inner pipe
- PUR insulation foam
- Outer casing pipe

Current Challenges with HDPE Casings

Insulation efficiency of pre-insulated pipe systems is reduced over time by the diffusion of air into the foam cells which leads to higher energy losses

Introduction of High Gas Barrier EVAL™ EVOH

A copolymer, combining the strengths of Ethylene and Vinyl Alcohol

- thermoplasticvery high gas barrier

Gas Barrier of EVAL™ EVOH

1 mm of EVAL™ F (32 mol% et. EVOH) has the same gas barrier as 9 meters of HDPE

		Gas transmission rates (GTR) (cm³.mm/m2.day.atm)		
Material	Test Conditions	N ₂	O ₂	CO ₂
EVAL™ FP101B *1	25°C, 0% RH	0.00034	0.0054	0.016
EVAL™ FP101B *1	20°C, 65% RH	-	0.0060	-
HDPE*2	22°C	22	70	247

^{*1} Gas transmission rate (ISO 14663-2)

^{*2} Extending the Service Life of Pre-insulated Pipes – Analyses of Diffusion Rates through PE and Impact on Aging, EuroHeat&Power, Vol 11/2009, 48-53 – Material: HE3470 produced by Borealis

Solution with Coextruded Casing Pipe with EVAL™ EVOH

Solution with Coextruded Casing Pipe with EVAL™ EVOH

Incorporate a barrier layer into the casing pipe

Maintain insulation efficiency

Reduce energy loss, minimize operating costs of overall network

Aging Experiments with Coextruded Pipewith EVOH

Using EN253 Standard: Aged Thermal Conductivity (λ) and foam cell gas analysis

- 1. Determine initial gas cell composition of **freshly made pipes**
- 2. Determine the cell gas composition of **aged pipes**Aging conditons: **150 days in oven at 90°C**, 1 m pipe samples

Composition of cell gases determined by modified gas chromatography

Foam cell gas composition expressed as partial pressure of a gas within the foam cells

Pipe samples accelerated aging study

Cyclopentane blown pipe; OD 75/DN 15 mm (following EN 253)

Pre-insulated pipe with a HDPE casing "Blank or control sample"

- Thickness
 - HDPE = 3.5 mm
- Length = 6 m

Pre-insulated pipe with a 3-layer casing HDPE/tie/EVAL™ EVOH

- Thickness
 - HDPE = 3.1 mm
 - EVAL[™] FP101B = 160 micron
 - Tie = 60 micron
- Length = 6 m

Aging Experiments with Coextruded Pipe with EVOH

Composition after aging (150 days at 90°C)

1 meter sealed pipe samples (cut edges sealed with epoxy)

Carbon dioxide

Partial pressure CO₂ (bar) 1.4 1.2 1 8.0 —EVAL™ barrier pipe 0.6 -Blank pipe 0.4 0.2 0 50 100 150 200 0 Time (days)

Air (Nitrogen & Oxygen)

Impact on thermal conductivity

EVAL™ barrier pipe leads to substantial reduction in Δλ

$$\Delta\lambda$$
 @ 90°C = $\lambda_{after 150 days} - \lambda_{initial}$

Aging Experiments with Coextruded Pipewith EVOH

Composition after aging (150 days at 90°C) amongst six (1 meter long) pipe segments

Other Methods of Implementation of EVOH Barrier

- 3-layer casing pipe
 HDPE/tie/EVAL™ EVOH
 - Direct adhesion between
 EVAL™ EVOH & PUR
 (without corona treatment)
- 5-layer casing pipe HDPE/tie/EVAL™ EVOH/tie/HDPE
- Coextruded film for continouos process
 HDPE/tie/EVAL™ EVOH/tie/HDPE

Summary

Benefits of EVOH for the preinsulated pipe industry

- Extend potential service life
 Minimize oxidative degradation of PUR foam
- Reduce energy loss, minimize operating costs overall network
 Maintain insulation efficiency
- Enable discontinuous & continuous production process

Thank you

Emilio Morales <u>emilio.morales@kuraray.com</u> +1(832)729-3251

Outline

Expected impact on temperature resistance

EVAL™ barrier pipe – Higher maximum service temperature or Longer service life

Continuous calculated operating temperature (CCOT) – EN 253

- Possible underestimation of foam degradation due to incoming oxygen at longer term
- Possible overestimation of maximum service temperature

EVAL™ barrier pipe allows to minimize long term foam degradation

Very good initial adhesion between PUR foam & EVAL™ barrier layer

Shear adhesion freshly made pipe: 0.35 MPa

Conclusion

Pre-insulated pipes with EVOH barrier

Even bigger benefits for water blown pipes

Delta Lambda after ageing

Pre-insulated pipe systems with EVAL™ EVOH barrier

Additional challenge

Implement the same concept into joint systems & fittings

- EVAL™ EVOH is compatible with current welding techniques (butt & electrofusion)
 - EVAL[™] EVOH = thermoplastic
- Today EVAL™ barrier fittings are already commercially available
- Development projects are ongoing

