2016 IDEA Annual Conference Wednesday, June 22, 2016 - 8:30-9:00 AM **5B Combined Heat & Power/Cogeneration** Waste to Energy **Next Generation Developments**

> Joseph C. Hoose Cool Systems

Introduction
Waste Statistics
Waste Process
Solution Process
Near Future

Introduction

Joseph C. Hoose, Cool Systems, Inc.

- Building Automation Systems
- Industrial Performance Contracting
- Central Plant Optimization
- Alternative Energy Solutions

HOW DID WE GET HERE

Waste History

Turing Waste into Value

Waste Statistics

Average American Family

The Average American family produces over 3 tons of "TRASH" per year

Waste Process

What is the most Common Solution?

Landfills

Waste Process

What is the most Common Solution?

Has anyone seen the river of garbage?

IDEA Waste History

History of Metro Nashville District Energy System

Shortly after taking office, Mayor Bill Purcell commissioned a study that evaluated Metro's solid waste management system. This study included an independent evaluation of Nashville Thermal Transfer Corporation (NTTC), which found the cost of disposal at NTTC high and the plant's operations unreliable. Based on the results of the study, the Mayor recommended, and the Council approved, the "Clean, Green, Lean" Waste Management Plan, which provides for greater waste diversion programs for the city and a new district energy system (DES).

As part of the new plan, Metro decided to phase out NTTC as a waste disposal option, enter into longterm contracts for the disposal of waste, and change the district energy plant to a natural gas-fired system. NTTC agreed to shut down the waste-burning components of the waste-to-energy facility by September 30, 2002, and to switch to natural gas-fired boilers to generate steam and chilled water. However, a fire in the waste receiving area occurred in May 2002, causing early closure of the wastefueled system.

The Thermal plant operated as a natural gas-fired facility using four boilers to produce steam and chilled water until January 2004, when the new energy generation facility (EGF) became fully operational. The NTTC plant was then torn down to make way for urban development on the riverfront property where it currently sits.

Waste Process

What does Every Community Have?

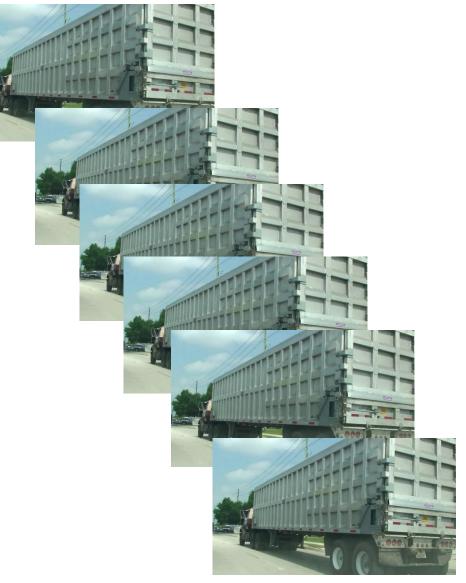
Transfer Stations

Waste Process

Make a big problem a little smaller

Transfer Stations

Landfill Tipping Fees


Landfill Tipping Fees in USA	High	Low	Average	Landfill Tipping Fees in USA	High	Low	Average
Alabama	\$47.00	\$26.00	\$37.60	Montana	\$31.05	\$16.50	\$25.51
Alaska (4 Landfills)	\$85.00	\$21.00	\$60.88	Nebraska	\$45.00	\$21.00	\$31.13
Arizona	\$38.25	\$30.00	\$33.05	Nevada	\$31.00	\$13.70	\$24.83
Arkansas	\$43.00	\$33.00	\$36.50	New Hampshire	\$87.55	\$67.00	\$77.85
California	\$76.82	\$34.37	\$52.07	New Jersey	\$96.00	\$44.31	\$72.39
Colorado	\$66.00	\$28.00	\$49.60	New Mexico	\$62.01	\$14.98	\$33.80
Connecticut (1 Landfill)	\$57.15	\$57.15	\$57.15	New York	\$102.00	\$49.50	\$86.30
Delaware (3 Landfills)	\$84.00	\$84.00	\$84.00	North Carolina (4 Landfills)	\$65.84	\$27.50	\$41.59
Florida	\$83.92	\$25.50	\$43.65	North Dakota	\$43.81	\$34.65	\$38.92
Georgia	\$45.00	\$30.55	\$38.27	Ohio	\$52.80	\$30.00	\$39.66
Hawaii	\$90.00	\$39.00	\$75.17	Oklahoma	\$50.29	\$25.75	\$38.31
Idaho	\$67.70	\$30.00	\$44.41	Oregon	\$83.75	\$28.50	\$55.74
Illinois	\$60.00	\$28.00	\$43.46	Pennsylvania	\$103.00	\$63.25	\$75.96
Indiana	\$60.10	\$32.00	\$44.20	Rhode Island (1 Landfill)	\$75.00	\$75.00	\$75.00
lowa	\$40.50	\$25.00	\$34.15	South Carolina	\$66.00	\$29.00	\$42.61
Kansas	\$43.50	\$30.50	\$37.46	South Dakota	\$59.00	\$34.00	\$41.90
Kentucky	\$55.00	\$33.50	\$44.69	Tennessee	\$48.00	\$30.50	\$41.15
Louisiana	\$31.00	\$19.80	\$26.96	Texas	\$41.00	\$5.00	\$28.95
Maine (4 Landfills)	\$115.00	\$72.00	\$91.00	Utah	\$33.00	\$15.00	\$24.29
Maryland	\$70.00	\$52.00	\$62.70	Vermont (2 Landfills)	\$87.14	\$77.50	\$82.32
Massachusetts	\$100.00	\$60.00	\$78.50	Virginia	\$66.00	\$32.00	\$46.11
Michigan	\$88.00	\$25.00	\$46.82	Washington	\$142.01	\$28.80	\$70.44
Minnesota	\$63.33	\$26.66	\$47.04	West Virginia	\$69.25	\$41.75	\$49.46
Mississippi	\$47.00	\$11.00	\$26.48	Wisconsin	\$66.00	\$35.00	\$50.20
Missouri	\$48.11	\$30.00	\$38.38	Wyoming	\$102.00	\$35.00	\$60.40

Moisture Content

Average MSW 35% -50% Moisture

Average MSW Low Energy Density

Sorting and Recycling

Shredding

Carbon Fuel Generator CFGTM

ReEngineered Solid Carbon Fuel

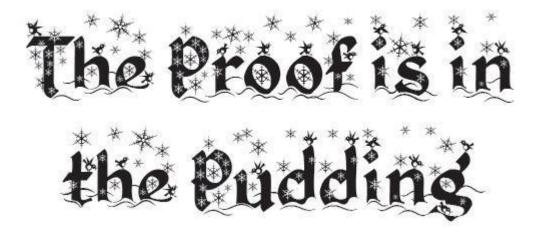
ReEngineered Solid Fuel

Hydrophobic

Pathogen Free

Moisture Free

Odorless



ReEngineered Solid Fuel

Odorless High Energy Solid Fuel Blocks

Emissions

		China	EU	Japan	UK	USA
	HCL (mg/Nm ³)	50	50	24	30	41
Emissions limits for Waste Treatment Plants	HF (mg/Nm ³)		2		2	
	SOx (mg/Nm ³)	100	300	30	300	100
	NOx (mg/Nm ³)	240	· · ·	514	350	200
	CO (mg/Nm ³)	100	100	63		
	Cd (mg/Nm ³)	0.1	· · · ·		0.1	
	Hg (mg/Nm ³)	0.1			0.1	
	Dioxin (TEQ-ng/Nm ³)	0.1	0.1	0.1	0.1	

Emissions

Initial Lab Results

- Below 2% moisture
- Very low SOx
- Very low Nox
- Very Low Chlorine

Reporting Basis >	As Rec'd	Dry	Air Dry
Proximate (%)			
Moisture Ash Volatile Fixed C Total	$1.20 \\ 3.87 \\ 89.98 \\ 4.95 \\ 100.00$	$0.00 \\ 3.92 \\ 91.07 \\ 5.01 \\ 100.00$	$1.20 \\ 3.87 \\ 89.98 \\ \underline{4.95} \\ 100.00$
Sulfur Btu/lb (HHV) Btu/lb (LHV) MMF Btu/lb MAF Btu/lb	0.047 14702 13729 15345	0.048 14880 13908 15540 15487	0.047 14702
Ultimate (%)			
Moisture Carbon Hydrogen Nitrogen Sulfur Ash Oxygen* Total	$ \begin{array}{r} 1.20\\ 73.13\\ 10.37\\ 0.19\\ 0.05\\ 3.87\\ \underline{11.19}\\ 100.00\\ \end{array} $	$\begin{array}{r} 0.00 \\ 74.02 \\ 10.49 \\ 0.19 \\ 0.05 \\ 3.92 \\ \underline{11.33} \\ 100.00 \end{array}$	$\begin{array}{r} 1.20 \\ 73.13 \\ 10.37 \\ 0.19 \\ 0.05 \\ 3.87 \\ \underline{11.19} \\ 100.00 \end{array}$
Chlorine**	1.520	1.538	1.520
Air Dry Loss (% Forms of Sulfur Sulfate Pyritic Organic Total Water Soluble A Na20 K20	.as S, (%) 0.05 ⊳	0.05	Lb. Alkali Oxide/MM Btu= Lb. Ash/MM Btu= 2.63 Lb. SO2/MM Btu= 0.06 Lb. Cl/MM Btu= 1.03 As Rec'd. Sp.Gr.= Free Swelling Index= F-Factor(dry).DSCF/MM Btu= 9.830 Report Prepared By: Gerard H. Cunningham Fuels Laboratory Supervisor

Economic and Environmental Value

ReSF is an engineered, high performance fuel delivering operational and environmental benefits.

ECONOMIC

•Comparatively priced to coal

- •Pollution control attributes may be eligible for addition to the electric utility's rate base
- •Lower capital expenditure than traditional air pollution control technologies
- •Potential for improved power plant efficiency
- •Potential to decrease parasitic load from existing air pollution control equipment
- •May be eligible for Renewable Energy Credits (RECs)

ENVIRONMENTAL

•Incremental sulfur, nitric oxide, hydrogen chloride and mercury emissions improvement beyond existing hard asset air pollution controls

- •Displaces 5-20% of coal, depending on boiler
- •Reduced CO₂ emissions
- •Reduced landfill disposal
- •Reduced Greenhouse gas emissions
- •Potential to reduce scrubber water use at power plant
- •Can meet Renewable Portfolio Standards (RPS)
- •Can be Recognized by EPA as a non-waste fuel

ReEngineered Solid Fuel

Bituminous Coal vs Engineered Carbon Fuel

The most plentiful form of coal in the United States, bituminous coal is used primarily to generate electricity and make coke for the steel industry. The fastest growing market for coal, though still a small one, is supplying heat for industrial processes.

- 10,500 BTU per lb.
- High Sulphur Content
- 15% Moisture

- >12,000 BTU per lb.
- Very Low Sulphur Content
- < 2% moisture

Emissions Reductions

Possible Pollutant Emission Reduction

ReSF is designed to achieve high levels of environmental performance Potential environmental pollutant reduction ranges are as follows:

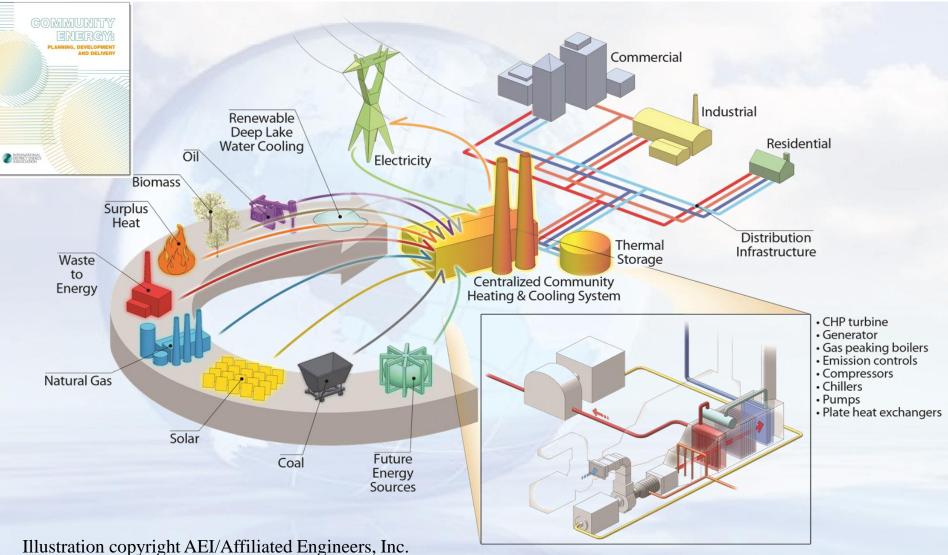
Potential environmental pollutant reduction ranges are as follows:

 $SO_250-90_{\%}$ $NO_x10-20_{\%}$ Hcl50-90_{\%} Hg60-90_{\%} CO_212-20_{\%}

Actual emission reduction results will vary depending on the combustion unit design and design margin, fuel used, operating and maintenance practices, downstream equipment, and the beginning emission levels of the combustion unit.

EPA Recognized

Renewable Energy


ReEngineered Solid Fuel

What's needed in a Fuel Source?

- Clean
- Stable
- Homogeneous
- Abundant

Community Future Proofing

Other Applications

Joseph C. Hoose Cool Systems, Inc.

Utility Generation, Distribution and Demand Side Optimization

(P)716-763-0295 jhoose@stny.rr.com