International District Energy Association

Insight on the technology decisions at King Abdulaziz University Central Utility Plant #2

Amar Farjo Lead Staff Engineer – Chiller Solutions Complex Projects

Key Contacts

Designer

Consultant

BRADY CONSULTING SERVICES 18 Tuscan Court Oak Brook, IL 60523 Tel: (630) 279-9424 Fax: (708) 409-1617

FLUOR FLUOR ARABIA LIMITED KING ABDULAZIZ UNIVERSITY PROJECT

P.O. BOX 8120, JEDDAH 21482 JEDDAH 21482 SAUDI ARABIA TEL: (966-2) 640-1445/640-1573/640-1668

Contractor

ARABIAN BEMCO CONTRACTING CO.LTD.

INDUSTRIAL and POWER PROJECTS DEVELOPERS & CONTRACTORS.

Main Equipment List

 5 Three-Stage Titan Chillers – Dual Duty. 3,600 Tons Chilled Water duty and 2,750 Tons Glycol duty. Total =

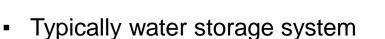
18,000 Tons water/13750 Tons Glycol

 14 Two-Stage base CYK Chillers – 2,185 Tons Chilled Water Each.

30,520 Tons

- 6 Ice Storage Tanks 21,150 Ton-Hr Capacity Each. Total Stored cooling capacity is: 126,900 Ton-HR
- 60 Dry Coolers (120 Fans) 11,978,900
 BTU/HR Each

700,000,000 BTU/HR Total



District Cooling Design Options

Typical District Cooling uses single stage centrifugal chillers with Cooling Towers and water storage system.

 Requires large amount of water. water quality is an issue.

Ice Storage

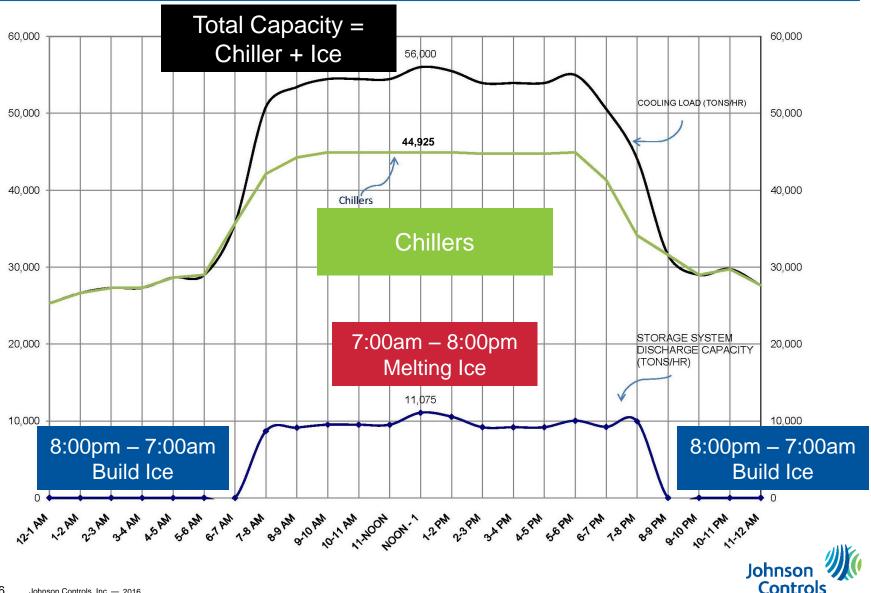
Dry-Coolers

Reduces number of chillers and dry coolers

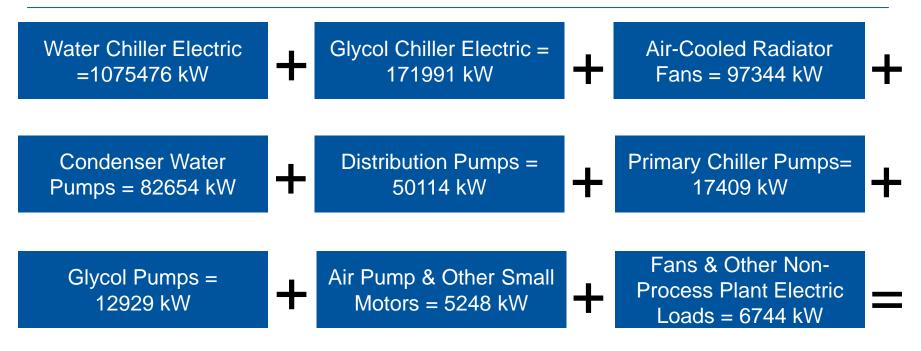
No water is lost!

Additional Benefits

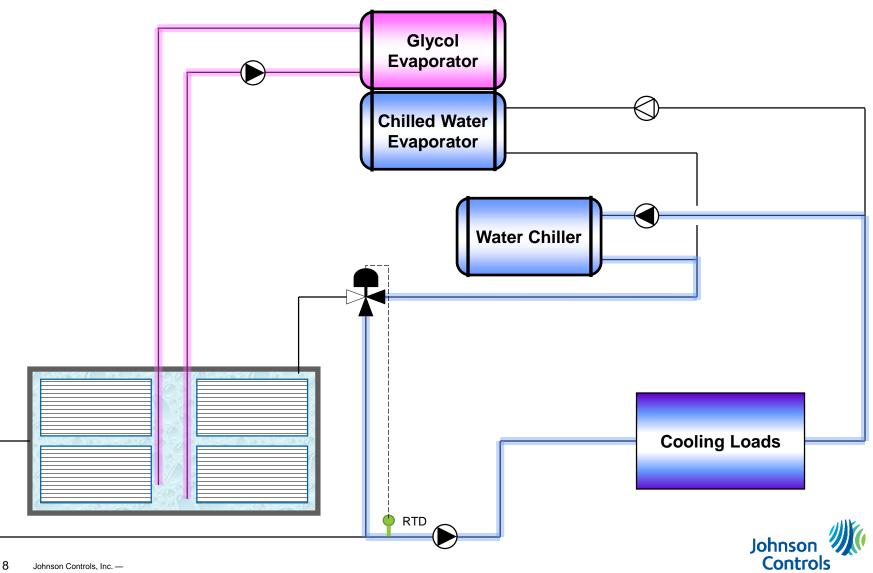
- Reduce peak demand, shift energy usage to nonpeak hours.
- Reduce pump, pipes and air equipment sizes

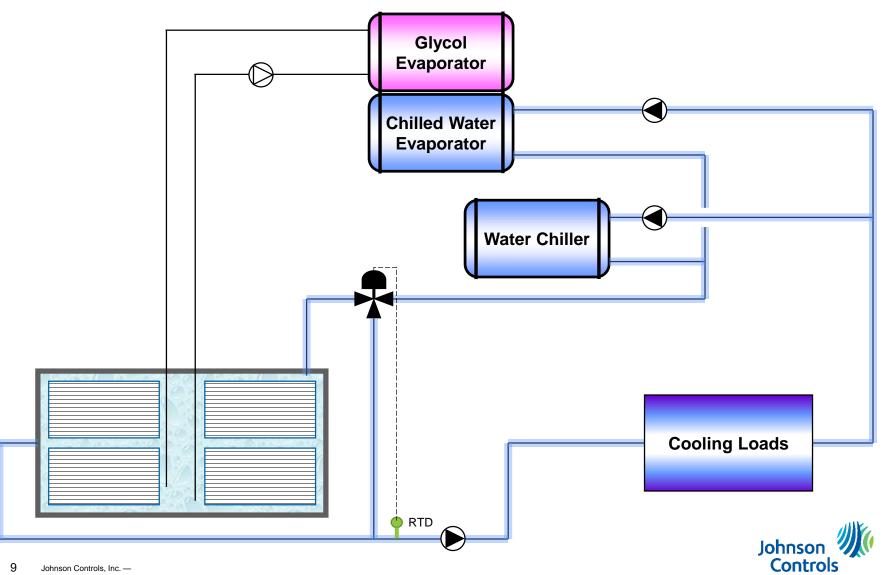


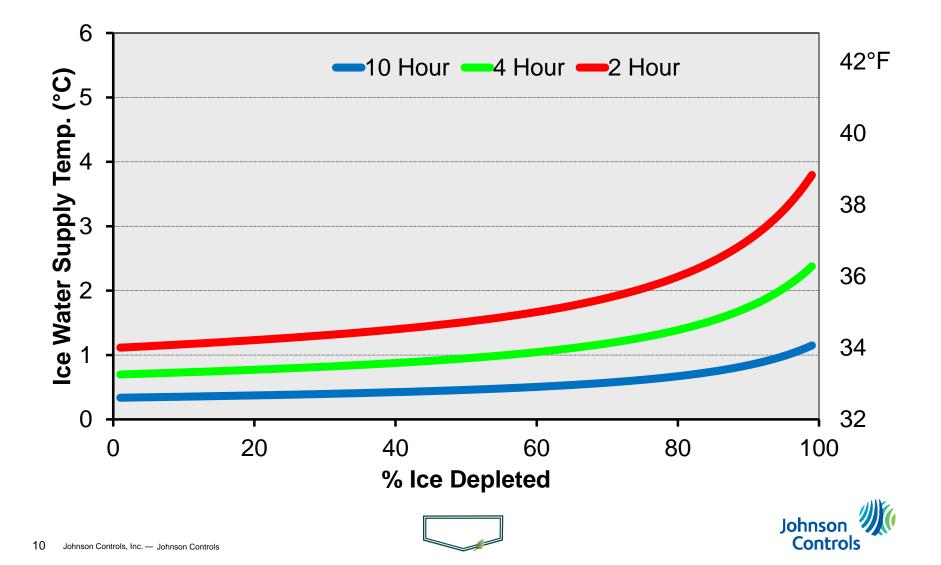
Central Utility Plants Design Conditions

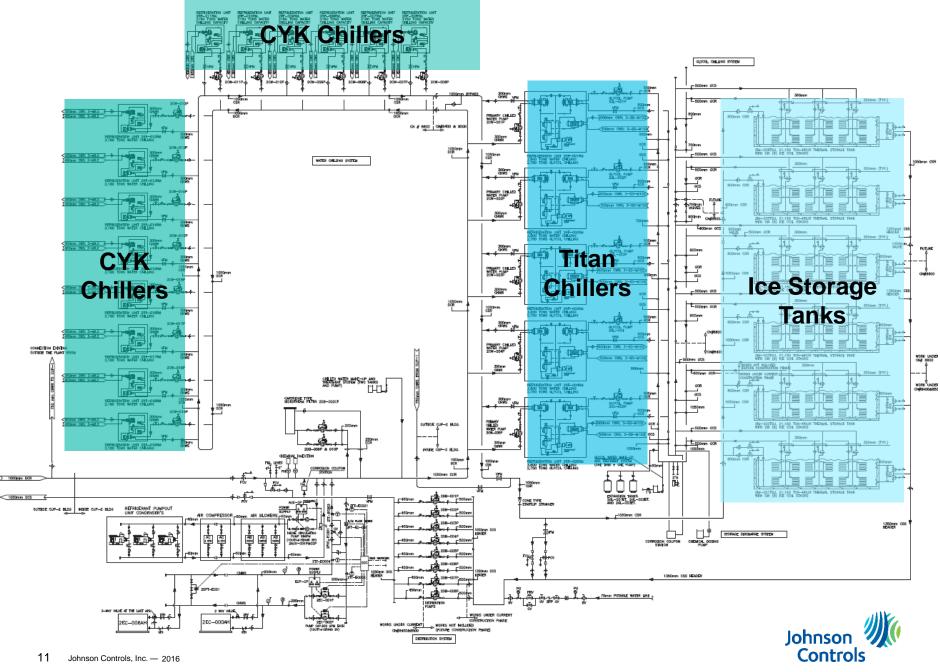

- Chilled water loop temperatures:
 - 7:00 am 8:00 pm $= 59^{\circ}F/36^{\circ}F(15^{\circ}C/2.2^{\circ}C)$
 - All other times = $59^{\circ}F/40^{\circ}F$ ($15^{\circ}C/4.5^{\circ}C$)
- Water chillers and Ice Storage:
 - Chillers in plant #1 and #2 deliver 80% of peak load.
 - Ice storage system to provide 20%
- Return chilled water flows through chillers in plants #1 and #2 first, then combine and flow over the ice heat exchangers in the tanks.
- Condenser water loop temperatures:
 - 7:00 am 8:00 pm = 130°F/140°F (54.4°C/60°C)
 - All other times = 130°F/138°F (54.4°C/59°C)

Chiller Plant CUP #2 Load Profile


Plant Energy Analysis – Ice on Coil Design Analysis Peak Day

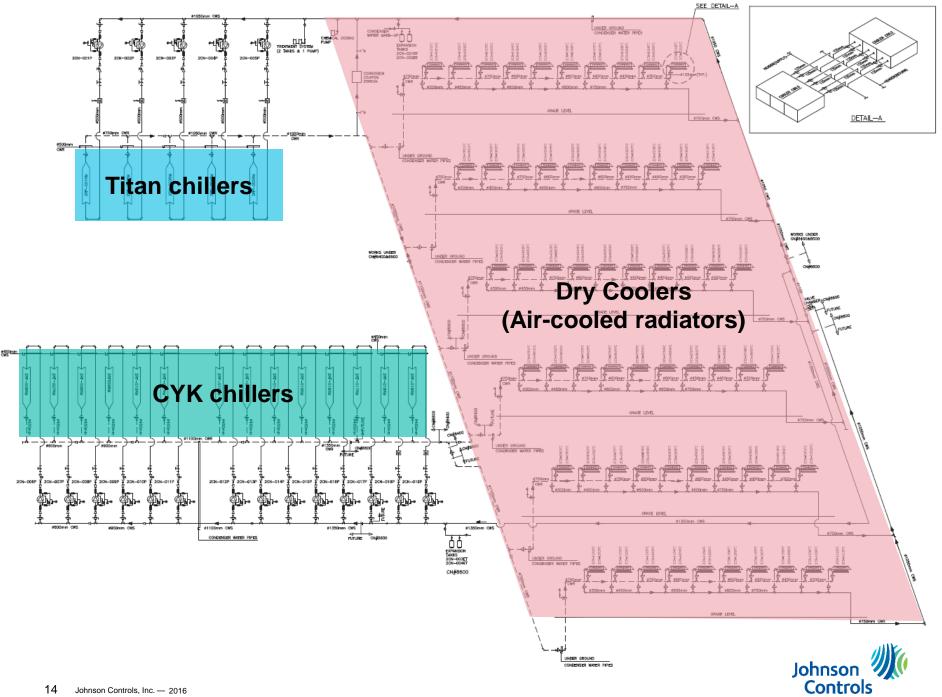

Total Daily kW/h = 1,519,918 Daily kW/Ton at peak day = 1.67 Actual measured KW/Ton = 1.36


Ice Build with Water Chilling

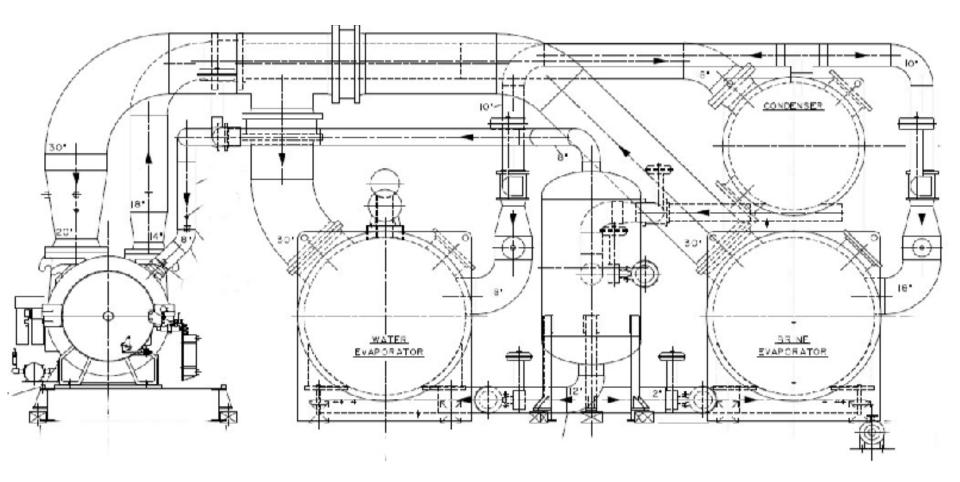


Ice Melt with Water Chilling

External Melt Supply Temperatures

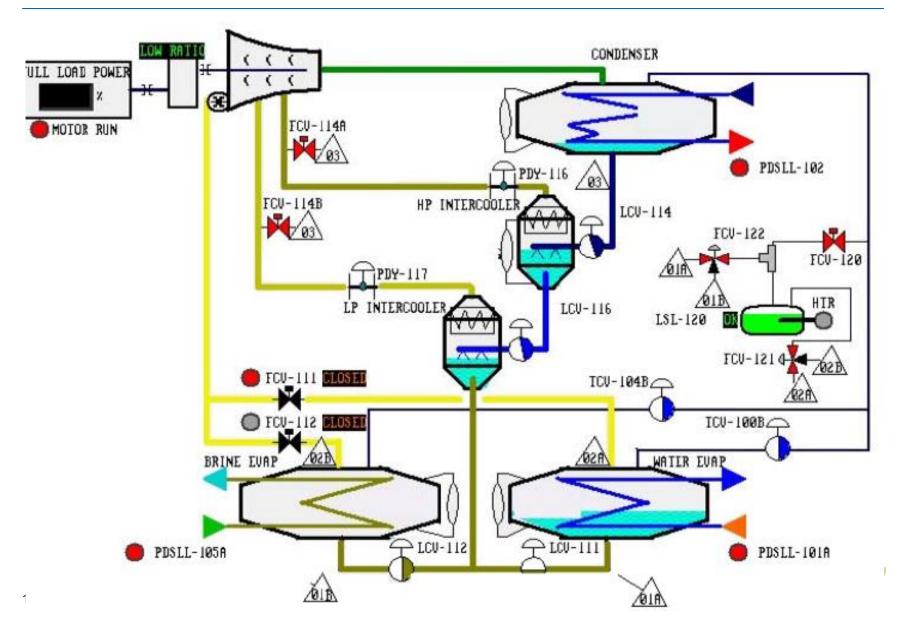


Air-Cooled Radiator – Dry Coolers



Titan OM Chillers – 3600 Tons Chilling Duty – 2750 Tons Ice Duty

D	ESIGN OPERATING CONDITIONS	Water Chilling	Brine Chilling
Chiller:	Design Load	3600 Tons	2750 Tons
	Efficiency (w/o liquid injection)	1.26 kW/Ton	1.50 kW/ton
	Efficiency (with liquid injection)	1.28 kW/Ton	1.54 kW/ton
Evaporator: Water Ent. & Lvg. Temperatures		59.0 °F to 40.0 °F	32.0 °F to 24.7 °F
	Water Flow	4547 gpm	9795 gpm
	Water Diff. Press. (nozzle – nozzle)	27.8 ft. water	44.6 ft. water
	Tubeside Fouling Factor	0.00010 ft ² -h-°F/Btu	0.00010 ft2-h-°F/Btu
	Refrigerant Temperature	38.8 °F	20.7 °F
	Refrigerant Pressure	48.6 psia	33.6 psia
Condenser: Water Ent. & Lvg. Temperatures		130.0 °F to 140.5 °F	130.0 °F to 138.4 °F
	Water Flow	10,800 gpm	10,800 gpm
	Water Diff. Press. (nozzle – nozzle)	27.8 ft. water	27.8 ft. water
	Tubeside Fouling Factor	0.00025 ft ² -h-°F/Btu	0.00025 ft2-h-°F/Btu
	Refrigerant Temperature	142.4 °F	139.9 °F
	Refrigerant Pressure	251.7 psia	243.6 psia
	Subcooler leaving refrigerant temp	132.9 °F	132.2 °F
Compressor: Suction & Discharge Temperatures		38.4 °F to 167.1 °F	20.5 °F to 167.8 °F
	Full Load Rotational Speed	4379 rpm	4682 rpm
	Shaft Power (w/o liquid injection)	5661 HP	5153 HP
Gear:	Input Power (w/o liquid injection)	5841 HP	5333 HP
Motor:	Input Elect. Power (w/o liquid injection)	4532 kW	4138 kW
	Electrical Requirements	13,800 V / 3 Ph / 60 Hz	13,800 V / 3 Ph / 60 H

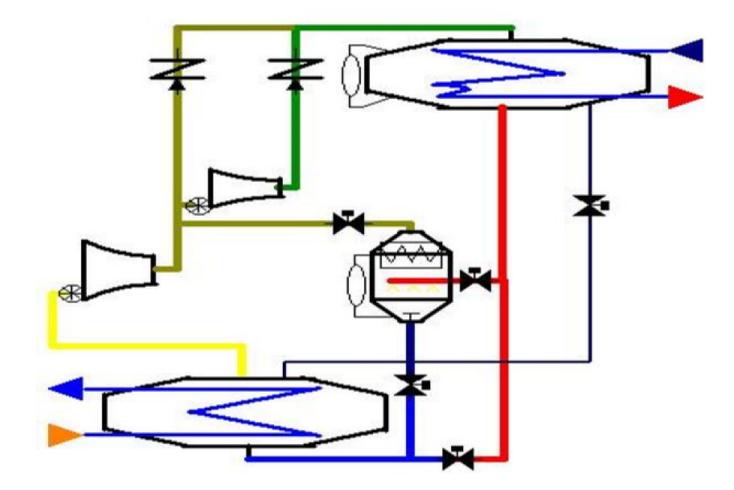


Titan OM Chiller Design

Titan OM Chiller Schematic

Installation Photo – Titan OM Chiller

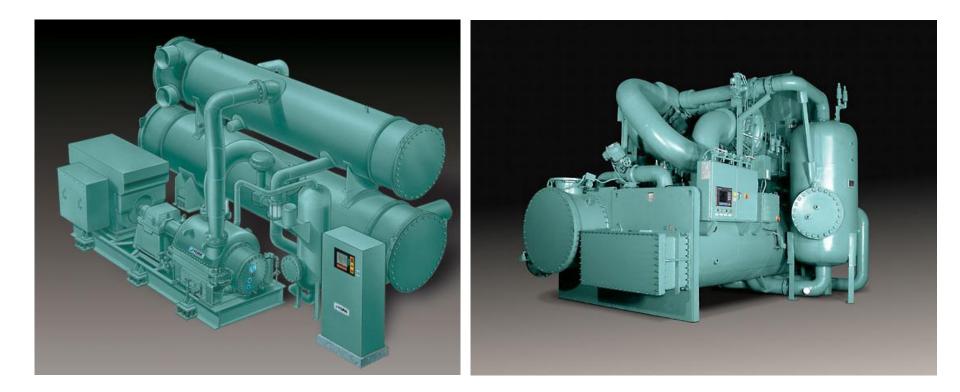
CYK Two Stage Chiller – Two Externally Compounded Compressors


PROJECT SALES B	DATE: 04 I ENGINEER ER	- 14-4 - AMAR	021 FARJO CUPII)/ARIF	н				PROGRAM: REV: v1 DATE: 00 PAGE: 1	135.3	4
MODEL (MOTOR RATED (REFRIGE	LS SPEC CAPACITY ERANT	CYKSSS IFIED B (TONS) (LB 13	SK4U2- IY USEI I4A)	-DJDJG 2185 7408		(MOT SPEC	OR HS S	SPECIFIE CAPACITY	D BY USER (TONS)	2) 2189 2189	5
INPUT I INPUT I TOTAL I TOTAL I VOLTAGE ECONOMI	POWER-LS POWER-HS INPUT PO FULL LOA E/HZ-LS E/HZ-HS IZER	(KW) (KW) WER(KW) D(KW/TC	N) 138 138 YES	1516 1281 2797 1.280 300/60 300/60 (48IN)		GEAR GEAR FLA-1 FLA-1 LRA-1 LRA-1	CODE-1 CODE-1 LS HS LS HS	LS IS	PAGE: 1 D BY USEF (TONS) HS PY EB	(SPEC) (SPEC) 73 73 471 471	20 9 3 3 1 1
HS-STAR	RTER TYP	E (0)									
FLUID TUBE PASSES FOUL FX FLUID F FLUID F FLUID F FLUID F REFRIGE	ACTOR ENT TEMP LEV TEMP FLOW (GPM PRDROP (F ERANT IN	(F) (F)) T) TERMEDI	ATE TE	EVAI WAT 2" 2" EMP (F)	PORATO IER 273* 3* 0.000 59.00 40.00 751.0* 31.4	2 010* * 94.4	COL W2 7 7	NDENSER ATER 262* 130.0002! 140.00 174.0* 36.9	5*		
(*) DES (LS) DE	SIGNATES ESIGNATE ESIGNATE	SPECIF S LOW S	TAGE (NPUT	SSOR						
(ELFT &	DAD PERF EVAP F NG MACH	LOW + C	EFT &	COND 1	FLOW a:	re Const	tant)				
% LOAD	CAP (TONS)	% POWER	INPUT (KW)	EEFT (F)	ELFT (F)	CEFT (F)	CLFT (F)	PEI (KW/TON)	RF) (COP)EFI	VGD	HeatRejec (TONS)
100.0 90.0 80.0 70.0	2185.0 1966.5 1748.0 1529.5	100.0 88.3 77.3 67.5	2797 2468 2180 1909	59.00 57.10 55.20 53.29	40.00 40.00 40.00 40.00	130.00 130.00 130.00 130.00	140.00 138.90 137.99 136.99	0 1.280 6 1.255 5 1.247 5 1.249	2.75 2.80 2.82 2.82 2.77 2.60 2.43		2948.2 2640.3 2342.9 2049.6
50.0s 40.0s 30.0s	1092.5 874.0 655.5	50.9 43.5 34.5	1480 1263 1013	49.49 47.59 45.69	40.00 40.00 40.00	130.00 130.00 130.00 130.00	135.0 134.1 133.1	5 1.270 6 1.355 2 1.445 3 1.545	2.60 2.43 2.28	5 5 5	1763.0 1492.8 1213.3 924.1
									2.28 2.00 1.97		
								HRI STD. THE STAN	550/590- DARD.	-2011	(IP),
								CONTROL:		82-50	21
MATERIALS AND CONSTRUCTION PER MECHANICAL SPECIFICATIONS - FORM 160.82-EG1.											

MODEL CYKSSSSK	4U2-DJDJG
(MOTOR LS SPECIFIED BY	USER)
RATED CAPACITY (TONS)	2185
REFRIGERANT (LB 134A) 7408
OPTISOUND CONTROL-LS	YES
INPUT POWER-LS(KW)	1516
INPUT POWER-HS (KW)	1281
TOTAL TRIDUT DOUCD (DAD)	2202
TOTAL FULL LOAD (KW/TON)	1.280
VOLTAGE/HZ-LS	13800/60
VOLTAGE/HZ-HS	13800/60
ECONOMIZER	YES (48IN)

	EVAPORATOR	CONDENSER
FLUID	WATER	WATER
THEF	272*	262*
PASSES	3*	2*
FOUL FACTOR	0.00010-	0.00025*
FLUID ENT TEMP(F)	59.00	130.00*
FLUID LEV TEMP(F)	40.00*	140.00
FLUID FLOW(GPM)	2751.0*	7174.0*
FLUID PRDROP (FT)	31.4	36.9
REFRIGERANT INTERMEDIATE	TEMP(F) 9	94.00

CYK Chiller Schematic



Installation Photo – CYK Chiller

Thank you

