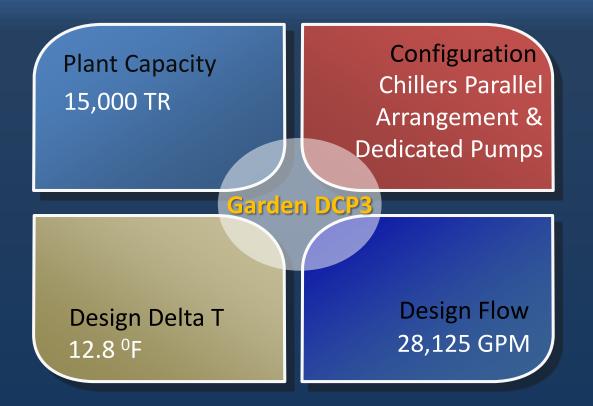


Garden DCP3 Plant Optimization Emirates Central Cooling Systems Corporation

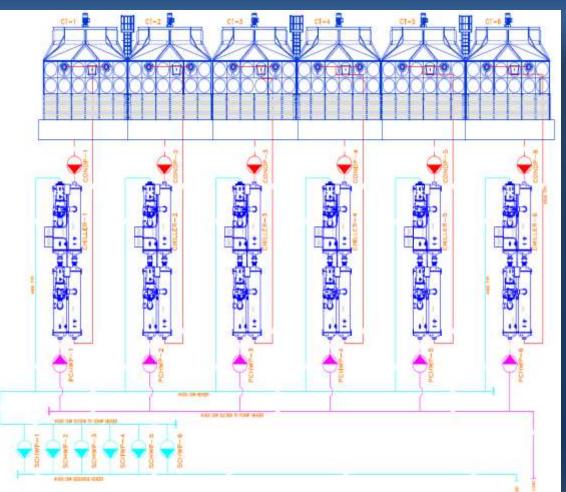
(EMPOWER)

Presented By: Tariq Al Yasi


Purpose

- Improved plant efficiency
- Improved plant capacity generation

Plant Design Parameter


Plant Operation Parameters Before Optimization

It is confirmed from the operation data that plant was not producing design tonnage with a huge capacity loss because of low delta T.

Plant Arrangement

- Chillers arranged in series/series-counter flow, having capacity of 15,000 TR
- Dedicated arranged six nos.
 (6) constant flow primary chilled water pumps
- Dedicated arranged six nos.
 (6) constant flow condenser water pumps
- (5 Duty + 1 Standby) variable flow secondary chilled water pumps

Run the plant at its maximum efficiency (Mitigation of low delta T Syndrome)

Accommodate potential new loads

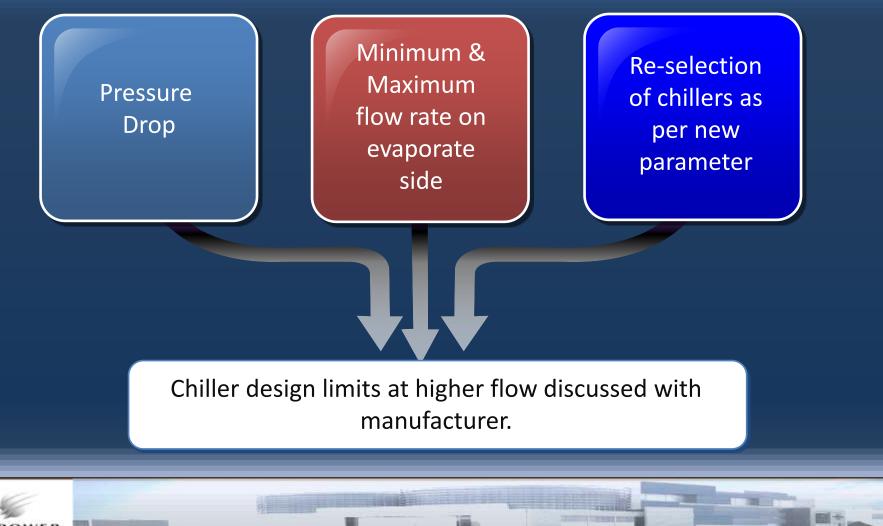
Avoid Capex of building new plant to serve new projects in the Vicinity

Utilize the existing network capabilities (No Modification)

3

Technical Approach

- In line with past 10 years operation data, delta T correction to be implemented
- Taking advantage of diversity 15,000 TR plant can serve a demand of 20,000 TR (.75 diversity)
- Key Elements Studied:
 - ✓ Plant Layout & concept of arrangement
 - ✓ Chillers
 - ✓ Primary, condenser and secondary Pumps



Plant Layout Study

- Plant does not have room for changing to headered pumping or parallel chiller arrangement.
- No space is available to add new primary and secondary chilled water pumps.
- CT's improvement was implemented earlier by increasing the fills height to maximum, any change in condenser water pump will not add value since maximum heat rejection is being already achieved.
- Ample Space available to install VFD's

Study Chiller – Design capabilities and Limitations

ENERGY SOLUTIONS

CHILLER SELECTION BASED ON Delta T 10 Deg. F @ 6000 GPM

	Description	Existing Chiller Capacity @ Delta T 12.8 °C	Chiller Selection at Higher Flow @ Delta T 10 ⁰ C
	Up stream (TR)	1,298	1,298
Capacity @ 100% Load	Down stream (TR)	1,228	1,242
	Overall (TR)	2,526	2,540
	In (deg. F)	53.8	51.12
Evaporator Temp.	Out (deg. F)	41	41
	Delta T (deg. F)	12.4	10.12
Fuenerator Flow	Up stream (GPM)	4,709	6,000
Evaporator Flow	Down stream (GPM)	4,709	6,000
Condensor Flow	Up stream (GPM)	7,384	7,384
Condenser Flow	Down stream (GPM)	7,382	7,384
Kw/Ton at Full Load	Overall	0.77	0.76
	In (deg. F)	95	94.73
Condenser Temp.	Out (deg. F)	104.9	104.63
	Delta T (deg. F)	9.9	9.9
	Up stream	16.1	20.4
Pressure Drop Evaporator	Down stream	18.3	20.6
	Total	34.4	41
	Up stream	31.8	31.8
Pressure Drop Condenser	Down stream	32	32
	Total	63.8	63.8
	Up stream Load (amp)	175	172
Motor	Down stream Load (amp)	168	166
	Total (amp)	343	338
EMBOWER			

EMPOWER INTEGT SOLUTIONS

Study Reselection of Primary Chilled Water Pumps

- The primary pumps are re-selected to operate up to 2.4 GPM/TR instead of 1.875 GPM/TR.
- Design delta T correction to 10 °F instead of 12.8°F
- Introduction of VFD pumps which ensure effective chiller utilization and mitigates capacity reductions because of Low Delta T syndrome.
- This viable solution not only improved the plant efficiency, but also caters for any potential capacity / load requirements as well.

Plant Efficiency Improvements

- Study Energy consequences at part load conditions
- Developed chiller and auxiliary efficiency matrix table comparing before and after scenarios.
- An insignificant energy penalty due to new pump selection duty point is diminished by overall benefits from chiller plant.

Table 1 – Chiller Plant Part Load Performance Data

SN	Load in %	Chiller Compressor KW/TR	Auxiliary KW/TR	Plant KW/TR	Chiller Compressor KW/TR	Auxiliary KW/TR	Plant KW/TR
1	10%	N/A	N/A	N/A	N/A	N/A	N/A
2	20%	0.83	0.94	1.77	0.83	0.94	1.77
3	30%	0.74	0.56	1.3	0.74	0.56	1.3
4	40%	0.71	0.4	1.12	0.71	0.4	1.12
5	50%	0.72	0.33	1.05	0.72	0.33	1.05
6	60%	0.76	0.29	1.05	0.76	0.29	1.05
7	70%	0.75	0.24	0.99	0.75	0.24	0.99
8	Plant was unable to operate at more than 70% of its capacity			0.74	0.21	0.95	
9				0.75	0.19	0.93	
10				0.76	0.17	0.94	

Environmental Advantages

 Energy consumption of chiller plant improved substantial and subsequently cutting down carbondioxide emission to atmosphere indirectly.

 We estimate at least 4 MW of demand power is reduced in central power grid. Indirectly power generation and associated emission is reduced.

Financial Benefits

Utilization of existing network

Electrical demand

VFD Pumps

GN-03 DCP EFFICIENCY AFTER VFD PUMPS			
Year	Plant TRH	Electrical KWH	KW/TR
2013	33,257,289	35,632,570	1.07
2014	34,231,410	36,880,000	1.08
2015 (VFD)	32,992,300	33,090,300	1
2016 (VFD)	33,466,527	34,424,522	1.03
2017 (VFD)	35,149,329	34,844,470	0.99

GN-03 DCP EFFICIENCY AFTER VFD PUMPS			
Energy Saving	0.08 KW/TR	2,811,946	KWH
Cost Saving		348,620/Year	USD

Plant Construction CAPEX

SN	Description	Unit Price	Total Cost in USD
1	Chiller Plant (Chiller, Auxiliary Units) - 4,000 TR	1,000 USD/TR	4,000,000
2	Piping Network - 4,000 TR (Cost for 2.0 km)	2,500 USD/Meter	5,000,000
3	Electricity Charges for 4,000 TR (Indirect and Direct Cost)	1,000 USD/KW	4,000,000
		Over all Cost	13,000,000

Project Cost

SN	Description	Total Cost in USD
1	General Requirements (site mobilization, preparation, office construction, etc.)	25,000
2	Civil Works	30,000
3	Mechanical Works	600,000
4	Electrical/Control Works (Garden 3)	350,000
	Overall Cost	1,005,000

Cost Saving of 12 Million USD

Project Progress

Project Progress

Project Progress

Thank you!

