Targeted DPS Design for Cities, System Expansion, and Modernization

Wednesday, June 13 IDEA 2018, Vancouver BC

Kristin Wild, M.A.Sc., P.Eng.

┿ Background

- District Energy development in British Columbia
- Climate change policy

- Cities and campuses
 - City of Vancouver
 - City of Surrey
 - City of North Vancouver
 - City of Richmond
 - University of British Columbia
 - Simon Fraser University

How do we best select design methods to suit system expansion? consulting engineers

THE UNIVERSITY OF BRITISH COLUMBIA

⁺ Considerations

- Corridor Planning
- System planning and future extension options (modeling)
- Existing infrastructure requirements and congestion
- Construction time window
 - Operating temperatures loads and possible setbacks
 - Cold temperature impact on displacement calculations

+ Stress Relief Options

Offset-based design

Controlled displacement at pre-designed nodes

+ Stress Relief Options

consulting engineers

Prestressing (Hot water / electrical / fixture) Intermediate temperature prior to backfill (various methods)

+ Offset-Based vs. Prestressing

University of Minnesota Steam System

Prestressing at City of Vancouver NEU

#1 – City of Surrey

#3 – City of Vancouver

#2 – UBC

#4 – Lonsdale Energy

Case Study #1 – City of Surrey

Design Criteria:

+

- Surrey is very large
 - Long distances, registered system
 - High temperature, pressure
- Rapid densification and infrastructure development
 - But phased in small increments
- Offset-based design for early stages
- City reference for existing infrastructure
- Conducting corridor-planning
- Perhaps transition to fixed displacement compensators to free corridor space for future utilities

Case Study #2

University of British Columbia

- 1) Steam to Hot Water Conversion
- 2) Building Extensions
- 3) System Expansions

Case Study #2 – UBC Conversion

- Large scale project challenging timeframe
- Varying degrees of infrastructure records
- Offset-based design provided troubleshooting for rerouting requirements and existing utility accommodations
- Registered

+

- Design Conditions:
 - 120°C
 - 232 MPa

Case Study #2 – UBC Extensions

- Small building extensions as development progresses
- Potential for constraints and conflicting services need to control expansion at penetration locations
- Anchor Fittings
- Concrete-encased
- Virtual anchor displacement

Case Study #2 – UBC Expansions

- Conducting smaller expansions as buildings come online
- Additional re-routings to suit campus development requirements
- Utilized fixed displacement compensators for long extension – combined calculations with offsetbased design.
 - Over 400m of straight pipe installation with two compensation fittings
 - Each designed for 60mm displacement
 - Coordinated setback temperature with main plant for hot water prestressing

City of Vancouver Neighbourhood Energy Utility

1) Prestressing

2) System Expansions

Case Study #3 – NEU Prestressing

Mid-Electrical Prestressing

Requirements

- Dense city centre near Olympic Village
- Rental of electrical prestressing machine allowed for entirely straight installation
- Consider power requirements
- Time requirements
- Required open trench in sections
 - Road closure was possible

+ Case Study #3 – NEU Expansion

Self-Compensating (low pressure)

Built-in Offset Requirements

Case Study #4 – Lonsdale Energy

North Vancouver

+

- Variable displacement
 - Floating compensator
 - Increased material cost
 - Lower installation cost
 - Less design flexibility
 - Streamlined corridor

+ Thank you!

- DES Questions?
- Restaurant recommendations?
- Good day hikes?

Contact: Kristin Wild, P.Eng. e. <u>kwild@kwl.ca</u> p. (604) 293-3273

City of Richmond Alexandra District Energy Utility

