EMBRACING THE CHANGE 70 PRE-INSULATED PIPE SUPPORTS

WHAT ARE THEY?

WHY USE THEM?

EXHIBITOR BOOTH 47

RILCO MANUFACTURING COMPANY

Kerry A. Esmond

http://www.rilco.com

kesmond@rilco.com

713-818-1561

PRE-INSULATED SUPPORTS FOR DISTRICT ENERGY APPLICATIONS

ABOVE GROUND PIPING FOR DISTRIBUTION ABOVE GROUND PIPING IN PLANTS PIPING IN TUNNELS PIPING IN TRENCHES

RILCO MANUFACTURING COMPANY

Kerry A. Esmond

http://www.rilco.com

kesmond@rilco.com

713-818-1561

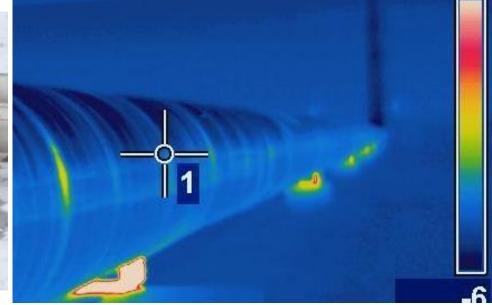
EFFICIENCY

Isn't this a core objective of IDEA and District Energy?

SUPPORTS THAT

WELD DIRECTLY TO PIPE

OR


CLAMP DIRECTLY TO PIPE

HAVE DOCUMENTED INEFFICIENCIES

WELDED SUPPORTS ON AN INSULATED LINE

PRE-INSULATED SUPPORTS ISOLATE THE PIPE FROM THE OUTSIDE STRUCTURE FOR MAXIMUM EFFICIENCY

PRE-INSULATED SUPPORTS
OFFER AN IMMEDIATE THERMAL
BREAK

ELIMINATES "RADIATOR FIN" HEAT LOSS THROUGH THE BASE

KEEPS BTU'S IN OR OUT OF THE PIPE DEPENDING ON TEMERATURE OF SERVICE

CASE #1: CALCULATION OF COMPARITIVE HEAT LOSS OF VARIOUS PIPE SUPPORT DESIGNS and OPERATING COSTS

As a baseline calculation, "ASTM C680-10 Standard Practice for Estimate of the Heat Gain or Loss and the Surface Temperatures of Insulated Flat, Cylindrical, and Spherical Systems by Use of Computer Programs" is used to predict the surface temperature and heat loss of the insulation system. To evaluate the heat loss of the two pipe support designs, a CFD (computational fluid dynamics) program, Autodesk CFD 360-2015 calculation is utilized.

Using ASTM C680-10 calculations, We compared:

36" pipe with **100mm** of Mineral Wool, process temperature 296 °C. with a welded support that was insulated over the pipe and support

36" pipe with **40mm** of Pyrogel XT, process temperature 296 °C. using a pre-insulated pipe support

36" pipe with **50mm** of Pyrogel XT, process temperature 296 °C. using a pre-insulated pipe support

- All pipe lengths 1 meter
- Native insulation of each over the pipe was calculated for a baseline without supports

RESULTS OF PIPE SUPPORT COMPARISON

Tab	le 3-Compa	rision of Heat	Loss a	nd Surface 1	Temperature (of Native Insulat	ion, welded or	support and	Insulated De	signs
									Heat Loss of	
					Surface				Weld Design	
					Temp.				and Insulated	
					Native			Heat Loss	Design with	
				Process	Insulation			Native	High Strength	
	Pipe OD	Insulation	Insul	Temp (deg	per CFD			Insulation	Inserts CFD	
Pipe Size	(in)	Thk(mm)	Type	C)	(deg C)			CFD (W/m)	(W/m)	% Diff.
36"	36	100	MW	296	1.34	WELDED SUP		-589.8	-4107	596.3%
36"	36	40	PG	296	2.78	PRE-INSULAT		-605.6	-870.2	43.7%
36"	36	50	PG	296	-0.048	PRE-INSULAT	ED SUPPORT	-478	-745.25	55.9%

PERCENT HEAT
LOSS FROM NATIVE
INSULATION
NOTE WELDED
SUPPORT SYSTEM

COST ANALYSIS

Assuming an energy cost of \$6.00 per MMBTU,

Table 6 compares the net energy costs in utilizing weld on and insulated pipe support versus the same one meter section of pipe with the native insulation.

Table 7 extends the energy costs and savings assuming a system total of 200 support quantity.

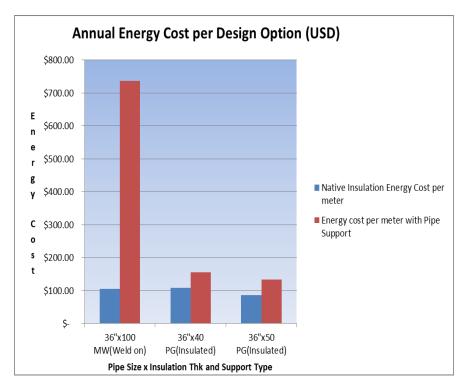
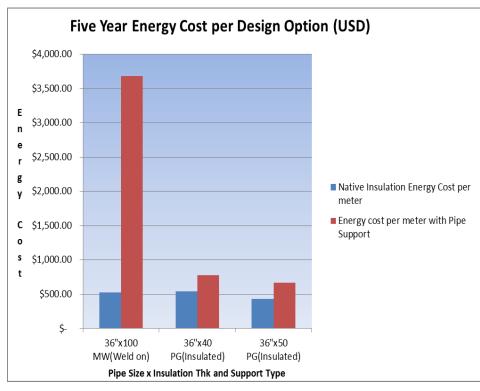
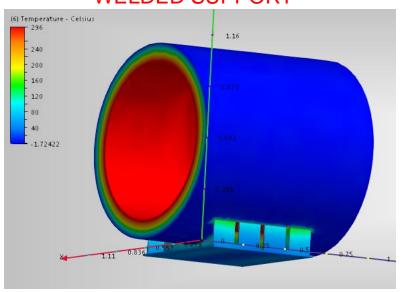

ONE METER SUPPORT / PIPE SECTION

Table 6	Table 6 -Calculation of Approximate Net Energy Costs between Native Insulation and Insulated Supports/ Weld on Supports							
				Weld on				
				and				5 Year
			Native	Insulated				Energy Cost
			Insulation	Support			Energy Cost	increase at
			Energy Cost	Cost @	% Increase		increase at	Support over
	Insulation	Insul Type &	per year @	\$6/USD per	over Native	/	Support over	Native
Pipe Size	Thk(mm)	Support Type	\$6 MMBTU	MMBTU	Insulation		Native Insulation	Insulation
36"	100	MW(Weld on)	\$ 105.78	\$ 736.56	596.3%		\$ 630.78	\$ 3,153.91
36"	40	PG(Insulated)	\$ 108.61	\$ 156.06	43.7%		\$ 47.45	\$ 237.27
36"	50	PG(Insulated)	\$ 85.73	\$ 133.65	55.9%		\$ 47.93	\$ 239.65

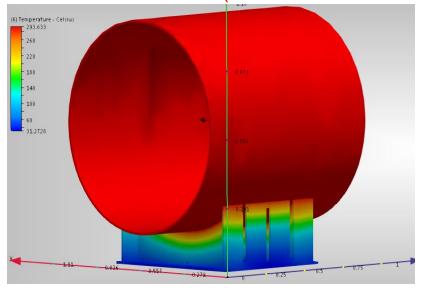
200 EACH SUPORTS AND ASSOCIATED PIPING


Table 7 -Calculation of Net Total System Energy Cost Savings Assuming a System Total of 200 Supports								
			Annual Energy Cost					
			increase at		Annual Energy			5 Year Net
			Support over		Cost increase	Annual Net	5 Year Energy	Savings of
			Native	Assumed	at Support	Savings of Pipe	Cost increase at	Pipe Support
			Insulation for	Quantity of	over Native	Support Design	Support over	Design versus
	Insulation	Insul Type &	Single	Supports in	Insulation for	versus Weld on	Native Insulation for	Weld on
Pipe Size	Thk(mm)	Support Type	Support	System	System	Support	System	Support
36"	100	MW(Weld on)	\$ 630.78	200	\$ 126,156.39	N/A	\$ 630,781.96	N/A
36"	40	PG(Insulated)	\$ 47.45	200	\$ 9,490.78	\$ 116,665.61	\$ 47,453.91	\$583,328.04
36"	50	PG(Insulated)	\$ 47.93	200	\$ 9,585.83	\$ 116,570.56	\$ 47,929.17	\$ 582,852.79

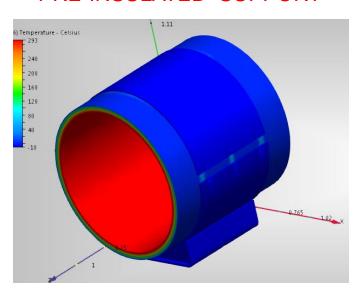
VISUAL REPRESENTATION OF COST COMPARISON

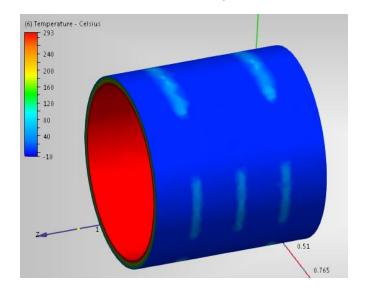

GRAPHS SHOW ONE SUPPORT ON ONE METER OF PIPE.

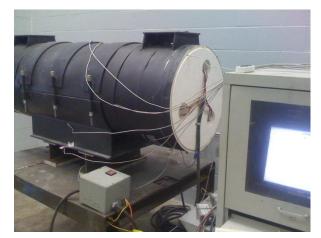
PROJECT SIZE

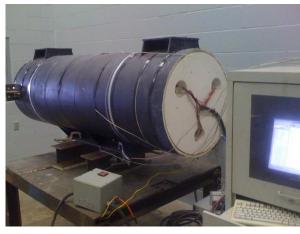


COMPUTER MODELING OF HEAT LOSS


WELDED SUPPORT


WELDED SUPPORT (INSULATION HIDDEN)

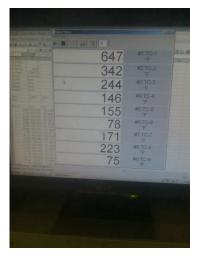

PRE-INSULATED SUPPORT


PRE-INSULATED SUPPORT (STEEL HIDDEN)

CASE #2: THERMAL LOSS TEST COMPARISON OF 3 TYPES OF PIPE SUPPORTS

PRE-INSULATED SUPPORT

WELD-ON SHOE



CLAMP-ON SHOE

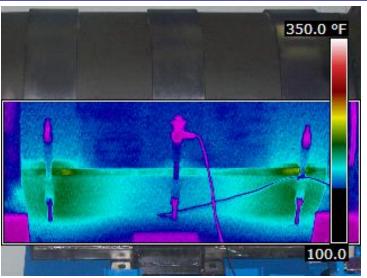
NOTE: Testing was performed in a shop environment at approximately 75-80 degrees F (24 degrees C). The test was performed in a calm environment with NO WIND. WIND across the system, and especially the WELDED support will significantly affect the heat loss and energy usage.

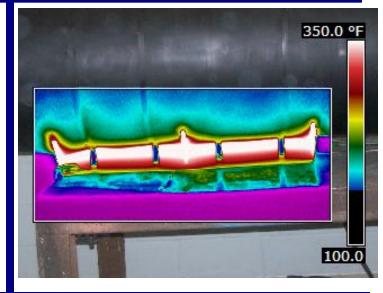
WATT METER

THERMAL LOGGING

THERMALLY TESTED PIPE SUPPORTS

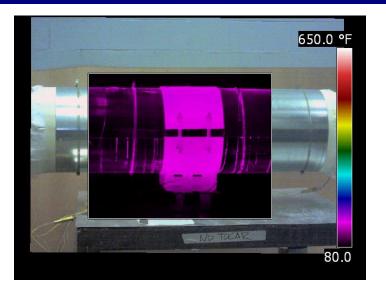
INFRARED PHOTOGRAPHY OF HEAT LOSS

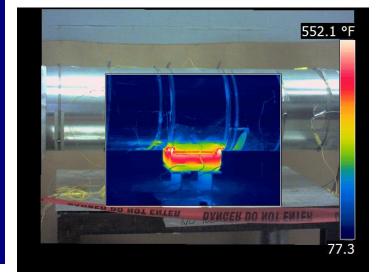

PRE-INSULATED SUPPORT


WELD-ON SUPPORT

24" STEAM LINE SUPPORTS

343 Degree C (650 Degree F)





12" PROCESS SUPPORTS

621 Degree C (1150 Degree F)

RILCO GUIDE SUPPORT

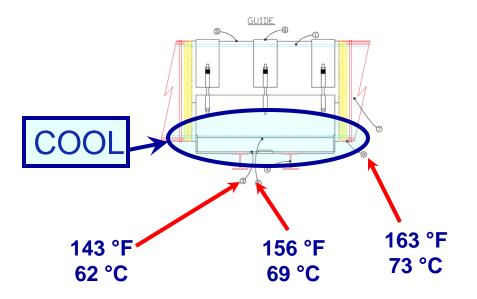
RILCO PYROWRAP

HOT SERVICE PYROGEL XT
GUIDED
PRE-INSULATED PIPE SUPPORT

Pipe Size: 24"

Insulation Thickness: 20 mm

Length: 900 mm


Design Temperature: 343 Degree C (650 Degree F)

Vertical Load: 65 kN (14,613 lbf) Lateral Load: 65 kN (14,613 lbf)

Axial Load: N/A

3.4
Kwatt/hour
to Retain
Heat
Saturation

651 °F 344 °C PIPE

WELD-ON SUPPORT

SUNCOR

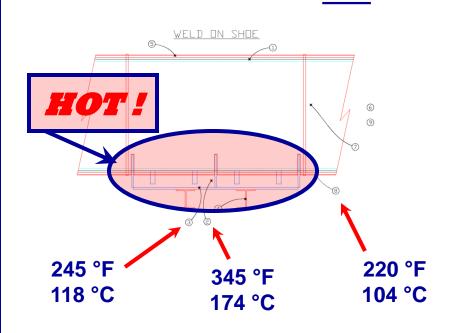
LS1-3-A-24"

WELDED PIPE SUPPORT

Pipe Size: 24"

Insulation Thickness: 0mm (20 mm over support)

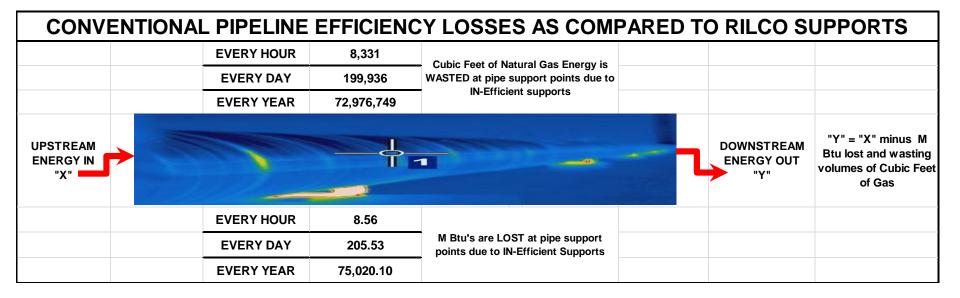
Length: 900 mm


Design Temperature: 343 Degree C (650 Degree F)

Vertical Load: 65 kN (14,613 lbf) Lateral Load: 65 kN (14,613 lbf)

Axial Load: N/A

656 °F 347 °C PIPE



ENERGY USAGE COMPARISON

ENERGY USAGE COMPARISON-PER <i>EACH</i> SUPPORT					
Weld-on vs Rilco Guide	1.2	Kwatt/Hour More Energy Reqired For Weld-on			
Clamp-on vs Rilco Guide	1.5	Kwatt/Hour More Energy Reqired For Clamp-on			

1.2 Kwatt/Hour Saved from EACH Support = 1.2 Kwatts saved PER HOUR
1000 Supports = 1,200 Kwatts PER HOUR
24 Hours in One Day = 28,800 Kwatts PER DAY
365 Days in One Year = 10,512,000 Kwatts PER YEAR
30 Year Plant Life Estimate = 315,360,000 Kwatts LIFE PLANT

CASE #3: PRE-ASSEMBLY OF PIPELINES TAKING THE MODULAR APPROACH TO BUILDING A PIPELINE

BENEFITS OF PRE-ASSEMBLED PIPELINES

ABILITY TO PRE-INSTALL OFFSITE MINIMIZING LAYDOWN SPACE ISSUES

PIPE SYSTEM CAN BE PRE-ASSEMBLED PRIOR TO PROJECT STARTUP

EFFICIENT PRE-INSTALLATION REDUCES LABOR TIME IMPROVING PROJECT SCHEDULE AND REDUCING COSTS

SAFE PRE-INSTALLATION AT WAIST HIGH CONDITIONS

VERY EFFICIENT ON STRAIGHT PIPING RUNS USING UP TO 80 FOOT LONG SECTIONS OF PIPE

PROVEN COST SAVINGS

OTHER BENEFITS OF PRE-INSULATED SUPPORTS

INSTALLATION PRE-INSULATED SUPPORTS

VERSUS

SUPPORTS THAT WELD OR CLAMP DIRECTLY TO PIPE

INSTALLATION COMPARISONS

BETWEEN VARIOUS TYPES OF PIPE SUPPORTS

INSTALLATION PROBLEMS WITH NON-INSULATED SUPPORTS

WELD-ON SUPPORTS

1.) EXPENSIVE LABOR RATES TO WELD AND TIME CONSUMING WELDING AND FOR QC

2.) TIME CONSUMING LABOR TO TRIM INSULATION AND JACKET AROUND STEEL RIBS

EASY INSTALLATION USING PRE-INSULATED SUPPORTS

PRE-INSULATED SUPPORTS

1.) BOLT-ON TO PIPE FOR FAST SECURE INSTALLATION

2.) AFTER BOLTING
YOU ARE FINISHED
AS THE INSULATION
AND JACKET ARE
PART OF THE
SUPPORT AND ARE
INSTALLED AS WELL

CORROSION UNDER INSULATION

PRE-INSULATED SUPPORTS VERSUS

SUPPORTS THAT WELD OR CLAMP DIRECTLY TO PIPE

CORROSION UNDER INSULATION

PRE-INSULATED SUPPORTS TOTALLY ISOLATE THE PIPE FROM THE OUTSIDE STRUCTURE

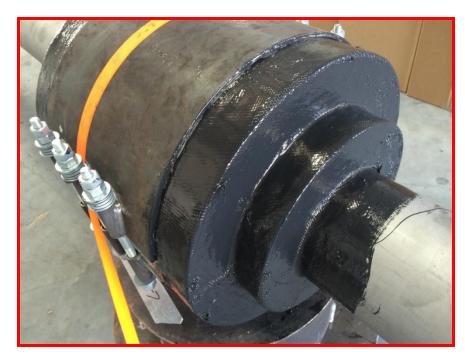
PRE-INSULATED SUPPORTS

WELDED SUPPORT

CONDENSATION

PRE-INSULATED SUPPORTS

VERSUS


SUPPORTS THAT WELD OR CLAMP DIRECTLY TO PIPE

PRE-INSULATED SUPPORTS TOTALLY ISOLATE THE PIPE FROM THE OUTSIDE STRUCTURE

PRE-INSULATED SUPPORTS CAN INCLUDE A SEALED VAPOR BARRIER SYSTEM TO ELIMINATE CONDENSATION

PRE-INSULATED SUPPORT TYPES

PIPE SUPPORT INSULATION MATERIAL OPTIONS

PERLITE

COMBINATIONS OF DIFFERENT INSULATIONS

SO, WHY USE PRE-INSULATED SUPPORTS?

FFFGENT - SAVES ENERGY
SAVES OFFERATING COST

EASY TO INSTALL - SAVES CONSTRUCTION TIME SAVES CONSTRUCTION COST

CAN BE BUILT USING VARIOUS TYPES OF INSULATION TO WORK WITH YOUR SYSTEM

THEY CARRY THE LOADS OF YOUR PIPE

PROTECT AGAINST CORROSION (CUI)

PROTECT AGAINST CONDENSATION

RILCO MANUFACTURING COMPANY

Kerry a. Esmond

http://www.rilco.com

kesmond@rilco.com

713-818-1561

DOESN'T IT MAKE SENSE TO "EMBRACE THE CHANGE" TO PRE-INSULATED PIPE SUPPORTS ?

WANT TO LEARN MORE ABOUT PRE-INSULATED PIPE SUPPORTS?

COME VISIT ME AT **BOOTH 47**

RILCO MANUFACTURING COMPANY

Kerry A. Esmond

http://www.rilco.com

kesmond@rilco.com

713-818-1561