LEADING THE WAY CampusEnergy2022

Feb. 15-18 | Westin Boston Seaport District Hotel | Boston, Mass.

Hydrogen Firing Burner & Boiler Impact

Bob Langstine, Zeeco

Presentation Overview

- Hydrogen vs. Natural Gas
- Burner Design
- Materials Selections
- Air Requirements and Fans
- Fuel Skids
- Controls
- Summary

- Hydrogen Firing Characteristics vs. Natural Gas Firing Characteristics
 - Flame Speed
 - H₂: 5.7 ft/s
 - Natural Gas: 1.3 ft/s
 - Flame Temperature
 - H₂ Adiabatic Flame Temperature: 3960 °F
 - Natural Gas Adiabatic Flame Temperature: 3518 °F
 - Visibility
 - A hydrogen flame is almost 100% translucent
 - Natural gas flames are more visible
 - Radiant vs. convective surface impacts

Video of an H₂ Flame in a Test Furnace

Burner Material Design Considerations - Metal Selection

- Elevated firing temperatures will require the burner's nozzles and flame stabilizers to be upgraded to higher grade stainless or high temp alloy
- Hydrogen Embrittlement and High-Temperature Hydrogen Attack requires the steel used in the burners to be chosen carefully

- Burner Material Design Considerations - Refractory Selection
 - Elevated firing temperatures and faster flame propagation speed subjects the burner throat and refractory to elevated temperatures
 - Refractory must be chosen carefully to prevent rapid deterioration of the throat
- The flame speed and temperature must be balanced against the individual application.

LEADING THE WAY CampusEnergy2022 Feb.15-18 Westin Boston Seaport District Hotel Boston, MA

- Lean Premix, Premix, or Rapid-Premix Burner Designs
 - Not suited for elevated levels of H₂ in the fuel stream
 - Flame propagation speed increases as the content of H_2 increases in the fuel stream
 - Flashback occurs when <u>fuel gas</u> velocity exiting the burner nozzle is <u>slower than the flame propagation</u> <u>speed</u> in a premixed application (fuel and air are already combined)
 - Significant damage to the burner components can result rapidly
- NOT RECOMMENDED

LEADING THE WAY

CampusEnergy2022 Feb.15-18 Westin Boston Seaport District Hotel Boston, MA

Staged Combustion Burner Designs

- Fuel and air staging mechanisms are used to decrease NOx emissions without compromising the burner components
- Both staging mechanisms work to <u>decrease peak flame temperature</u> thus decreasing NOx emissions

THE PREFERRED APPROACH

Fan Design Considerations

- The fan requirements for burning Natural Gas or Hydrogen are about the same
 - Natural Gas requires <u>723 lb air /</u> <u>MMBtu</u> for stoichiometric combustion
 - H₂ requires 561 lb air / MMBtu (~20% Δ)
 - However, to get the same NOx emissions as natural gas, H₂ requires ~15% more FGR
 - The additional mass flow from the FGR requires the fan to be sized about the same as with natural gas firing.

Fuel Skid Design Considerations

Skid Construction

- Line Sizing
- Zeeco sizes a fuel train so that the velocity of the gas passing through the valve train does not exceed Mach 0.16.
- A gas that exceeds **Mach 0.16** will generate pipeline noise that exceeds **85 dBa**.
- Natural Gas has a limiting velocity of 232 ft/s
- H₂ has a limiting velocity of 660 ft/s
- No threaded joints, other than process connections

Fuel Skid Design Considerations

• Skid Construction

• Material Restrictions:

- Irons Cast, Ductile, Malleable, and High Silicon (14.5%) are prohibited due to their lack of ductility and their sensitivity to thermal and mechanical shock
- Valve and Piping materials must be carefully chosen to avoid failures from hydrogen embrittlement, which can lead to failure

• Valve Construction:

- Valves should be leak tested with helium. Helium leak tests of valves in the open position, leakage shall not exceed 1×10^{-8} ml/s when differential pressure between atmosphere and internal passages of the valves is greater than 100 kPa (14.6 psi)
- Must adhere to valve standards listed in Table IP-8.1.1-1 in ASME B31.12-2019
- Valve CV* must be sized appropriately to provide control resolution when firing Natural Gas and H₂ on the same burner

***CV** = Industry Valve flow co-efficient

Instrumentation & Controls Considerations

• Flame Scanners

LEADING THE WAY

Feb.15-18 | Westin Boston Seaport District Hotel | Boston, M

- Proper scanner selection is critical
- H₂ combustion generates water vapor. As the concentration of H₂ in the fuel approaches 80%, most flames scanners cannot consistently distinguish the flame with the high level of water vapor present
- Modern solid state UV sensors can "see" through the water vapor produced in combustion (and steam atomization) and are reliable while older UV tube designs cannot

Instrumentation & Controls Considerations

• Varying Fuel Stream

LEADING THE WAY

CampusEnergy2022 Feb.15-18: Westin Boston Seaport District Hotel Boston, MA

- Burners designed to fire a varying fuel composition will require:
 - Fully Metered Combustion Control System
 - Meters all fuel inputs to account for total combined gaseous heat input
 - Wobbe Index Meter or Specific Gravity Meter
 - Monitors the varying fuel streams' composition and provides the necessary input to the control system to adjust the fuel/air ratio based on real-time conditions
 - The inability to monitor the fuel stream composition and adjust the fuel/air ration accordingly can lead to an unsafe fuel rich condition

- ASME Power Test Code (ASME PTC 4.1-1964) is the governing standard for determining boiler efficiency
 - The standard recognizes three main losses in boiler efficiency
 - Dry Flue Gas Loss
 - Loss Due To Moisture From The Combustion Of Hydrogen
 - Radiation And Convection Loss

• Loss Due to Moisture From the Combustion of Hydrogen

- When hydrogen is combusted it forms water vapor as a byproduct of combustion
- The water vapor as it leaves the boiler takes with it the enthalpy at the temperature and pressure at which it leaves the boiler
- For Natural Gas this loss is around 10.9%
- For 100% H2 this loss is around 17%

$\frac{CH_4 + 2(O_2 + 3.76N_2) = CO_2 + 2H_2O + 7.52N_2}{2H_2 + (O_2 + 3.76N_2) = 2H_2O + 3.76N_2}$

- Governing Equation For Loss Due To Moisture From The Combustion Of Hydrogen
 - $L_H, \% = \frac{900 * H_2 * (h_g h_f)}{HHV}$
 - $L_H = Loss Due To Moisture From The Combustion Of H_2$
 - H_2 = weight fraction of hydrogen in the fuel
 - $h_g = enthalpy of water vapor in the flue gas$
 - $h_f = enthalpy of water in the combustion air$
 - *HHV* = *higher heating value of the fuel*

• Case Study

- Analysis of boiler efficiency when switching to a fuel stream with a large $\rm H_2$ concentration
 - Boiler Fuel Streams
 - Fuel Stream A: 100% Natural Gas
 - Fuel Stream B: 85% H₂ / 15% Natural Gas
 - A Natural Gas Firing Full Load Heat Input: 374 MMBTU/hr
 - B Hydrogen Gas Firing Full Load Heat Input: 385 MMBTU/hr
- On average 3% more heat input is required with the combustion of hydrogen due to the loss of heat carried away by the excess moisture produced vs. NG combustion

$$\frac{H_2Heat\,Input}{NG\,Heat\,Input} = \frac{385\frac{MMBtu}{hr}}{374\frac{MMBtu}{hr}} = 1.03$$

Summary - Burning Hydrogen Fuels

- Burner Design Considerations
 - Metal & Refractory Choices
 - Burner Type
 - FD Fan Evaluation & Sizing
- Fuel Skid Design Considerations
 - Skid Sizing
 - Valve Sizing
 - Material Selection

- Fully Metered
- Boiler Design Considerations
 - Efficiency Impact

Talk to Our Combustion Experts

- Zeeco Contacts
 - Bob Langstine Regional Sales Manager, North America
 - bob_langstine@zeeco.com
 - Bill Gurski Director, Power Sales
 - bill_gurski@zeeco.com
 - John Guarco Technical Director, Boiler Burners
 - john_guarco@zeeco.com

Questions?

Bob Langstine

