Campus Energy 2021 BRIDGE TO THE FUTURE Feb. 16-18 | CONNECTING VIRTUALLY WORKSHOPS | Thermal Distribution: March 2 | Microgrid: March 16

Effect of Lowering CondenserWaterTemperature on Chiller Efficiency.

Vinicius Cruz, PE. January 06, 2021.

Q&A Will Not Be Answered Live

Please submit questions in the Q&A box. The presenters will respond to questions off-line.

- 1. Introduction to Chilled Water Plants.
- 2. Design conditions of cooling towers.
- 3. Efficiency gain in modern chillers.
- 4. Simulation parameters and results.
- 5. Conclusion.

Objective: demonstrate that water cooled chillers can take advantage of real world conditions according to the local psychrometric conditions.

Cooling Towers

- > Responsible for the rejection of the heat absorbed in the condenser, into the atmosphere.
- > This process combines heat and mass transfer with sensible and latent exchanges.
- Tower capacity = 1.25 kW/kW chiller capacity (ASHRAE, Handbook HVAC Systems).

- > HVAC and lighting trend to be greater energy consumers in comercial building (70% off all energy consumption).
- > Focus on the chiller as the principal consumer in the plant.
- > Mag tecnology used to reach new benchmarking of efficiency.

Energy usage in a typical biulding

How gain efficiency in the chiller ?

- Startegies to reduce energy
 - Use VSD in the compressor;
 - > Reduce the compressor lift \rightarrow Design condition is ECWT 85°F (29.5°C).

		Pa	artioad Da	ta (Minim	um Conden	ser Water 1	Femperatur	e)			
CEFT (°F)	% LOAD										
	100%	90%	80%	70%	60%	50%	40%	30%	20%	10%	
85.00°	0.5321	0.5174	0.5031	0.4959	0.4993	0.5126	0.5418	0.5992	0.8012	-	
80.00°	0.4766	0.4582	0.4452	0.4372	0.4346	0.4412	0.4603	0.5096	0.6544	1.309	
75.00°	0.4227	0.4038	0.3 <mark>904</mark>	0. <mark>3818</mark>	0.3733	0.3788	0.3945	0.4245	0.5379	1.074	
70.00°	0.3729	0.3537	0.3386	0.3271	0.3191	0.3165	0.3270	0.3516	0.4060	0.8188	
65.00°	0.3296	0.3079	0.2909	0.2775	0.2678	0.2605	0.2639	0.28 <mark>25</mark>	0.3216	0.6545	
60.00°	0.2901	0.2668	0.2470	0.2312	0.2194	0.2110	0.2081	0.2196	0.2487	0.3775	
55.00°	0.2540	0.2293	0.2073	0.1891	0.1749	0.1652	0.1589	0.1629	0.1819	0.2587	
50.00°	0.2242	0.1959	0.1718	0.1519	0.1356	0.1218	0.1135	0.1099	0.1194	0.1618	
45.00°	0.2067	0.1760	0.1481	0.1277	0.1045	0.09002	0.08009	0.08320	0.1234	0.2102	
40.00°	0.2017	0.1744	0.1493	0.1266	0.09643	0.08215	0.07320	0.08944	0.1424	0.2180	
39.00°	0.2016	0.1746	0.1495	0.1273	0.09676	0.08256	0.07130	0.08812	0.1407	0.2166	
38.00°	0.2019	0.1751	0.1499	0.1279	0.09762	0.08352	0.07167	0.08682	0.1388	0.2154	
37.00°	0.2025	0.1757	0.1505	0.1285	0.09914	0.08494	0.07283	0.08557	0.1368	0.2141	
36.00°	0.2033	0.1765	0.1511	0.1293	0.1024	0.08640	0.07402	0.08436	0.1348	0.2128	

Inverted Duty = Operation Extra-Low ECWT – Real World Energy Operation

70% more efficient

80% more efficient

Widest Operating Map in the Industry

- > One 500 Tons Centrifugal Chiller, rated with AHRI design conditions.
- > Operation from Monday to Friday from 8 a.m to 18 p.m total 2600 hours/year.
- Weather data TRY/IWEC (Energy plus).
- > Building load directly proportional to BIN temperatures.
- Usage Cost \$0.20/kWh.
- Same chiller Plant with 2 alternative operation modes:
 - Alternative 1: ECWT fixed 29.5°C (85°F) so low demand of the cooling tower.
 - Alternative 2: ECWT variable based the climatic condition, so high demand of the tower.
 - ECWT as low as the local psychrometric allows.

Simulation results – Chillers Efficiency.

Controls

- Focus on the chiller energy usage in Denver weather data.
- Chiller Plant became 30% more efficient in alternative 2.

Economy Ratio Chiller/Tower shows positive results in the region.

DENVER							
Operating Cost	Co	oling Tower	Chiller	CWP	Economy Ratio		
Alternative 1	\$	2,872.00 \$	105,154.00 \$	139,108.00	Chiller / Tower		
Alternative 2	\$	12,407.00 \$	54,122.00 \$	97,611.00			
Result	\$	-9,535.00 \$	51,032.00 \$	41,497.00	5.35		

LAS VEGAS								
Alternative 1	\$	4,275.00 \$	122,252.00 \$	157,609.00				
Alternative 2	\$	12,715.00 \$	78,003.00 \$	121,800.00	Chiller / Tower			
Result	\$	-8,440.00 \$	44,249.00 \$	35,809.00	5.24			

			PHOENIX				
Alternative 1	\$	5,409.00 \$	132,725.00 \$	158,955.00	Chiller / Tower		
Alternative 2	\$	12,730.00 \$	100,801.00 \$	130,798.00			
Result	\$	-7,321.00 \$	31,924.00 \$	28,157.00	4.36		
NEW YORK							
Alternative 1	\$	4,366.00 \$	106,909.00 \$	142,357.00	Chiller / Tower		
Alternative 2	\$	12,204.00 \$	73,176.00 \$	116,463.00			
Result	\$	-7,838.00 \$	33,733.00 \$	25,894.00	4.30		

CHICAGO								
Alternative 1	\$	3,674.00 \$	102,789.00 \$	137,545.00	Chiller / Tower			
Alternative 2	\$	12,018.00 \$	68,924.00 \$	112,024.00	Chiner / Tower			
Result	\$	-8,344.00 \$	33,865.00 \$	25,521.00	4.06			
SAN ANTONIO								
Alternative 1	\$	6,785.00 \$	129,820.00 \$	167,687.00	Ch:11-11 / Terrer			
Alternative 2	\$	13,379.00 \$	109,300.00 \$	153,761.00	Chiller / Tower			
Result	\$	-6,594.00 \$	20,520.00 \$	13,926.00	3.11			
MIAMI								
Alternative 1	\$	8,984.00 \$	144,145.00 \$	184,211.00				
Alternative 2	\$	13,400.00 \$	133,798.00 \$	178,280.00	Chiller / Tower			
Result	\$	-4,416.00 \$	10,347.00 \$	5,931.00	2.34			

- > Economy Operational to all cities shows positive results to plant analysis.
- > The local psychrometric conditions influence in the cooling tower operation, and whole plant.

- > With higher demand of the cooling tower the water usage trends to rise too.
- > The main source of water consumtsion is evaporation, drift losses have also been added.
- > The make up water in the alt. 2 is too small compare to the total water circulation in the condenser system.
 - Cooling water conditions 356.36 m³/h * 2600 h/year = 926.536 m³/year or 24.476*10⁴ GPM/year.

Cooling Tower make up water								
CITY	Alt 1 (m³/year)	Alt 2 (m³/year)	Increase BTW Alt %	Increase BTW CWP %				
DENVER	3,351.05	3,918.61	14%	0.1%				
Las Vegas	4,270.54	4,764.44	10%	0.1%				
PHOENIX	4,846.03	5,918.45	18%	0.1%				
NEW YORK	3,609.83	4,164.53	13%	0.1%				
CHICAGO	3,399.52	3,987.80	15%	0.1%				
SAN ANTONIO	4,912.63	5,359.27	8%	0.05%				
MIAMI	5,897.01	6,247.54	6%	0.04%				

Conclusions

- \succ Lower ECWT = lower LIFT = Efficiency gain in the chiller.
- Operation of the plant remained optimized following the alternative 2.
- > The Plant can be optimized without any initial cost, by only changing the operation mode of the system.
- The design conditions could be different based on climate, and the chiller could take advantage of this weather data.
- > The results of the simulations varied according to the psychrometric conditions of each city.
 - All economic ratios for chiller/tower shows positive values.
- The control mode only by temperature set point is simple, and does not take into account the instant local climatic conditions during the operation.
 - BMS system could change the operation mode chasing the best operation point.

Questions?

Vinicius Cruz, PE. Johnson Controls Hitachi vinicius.1.cruz@jci-hitachi.com

