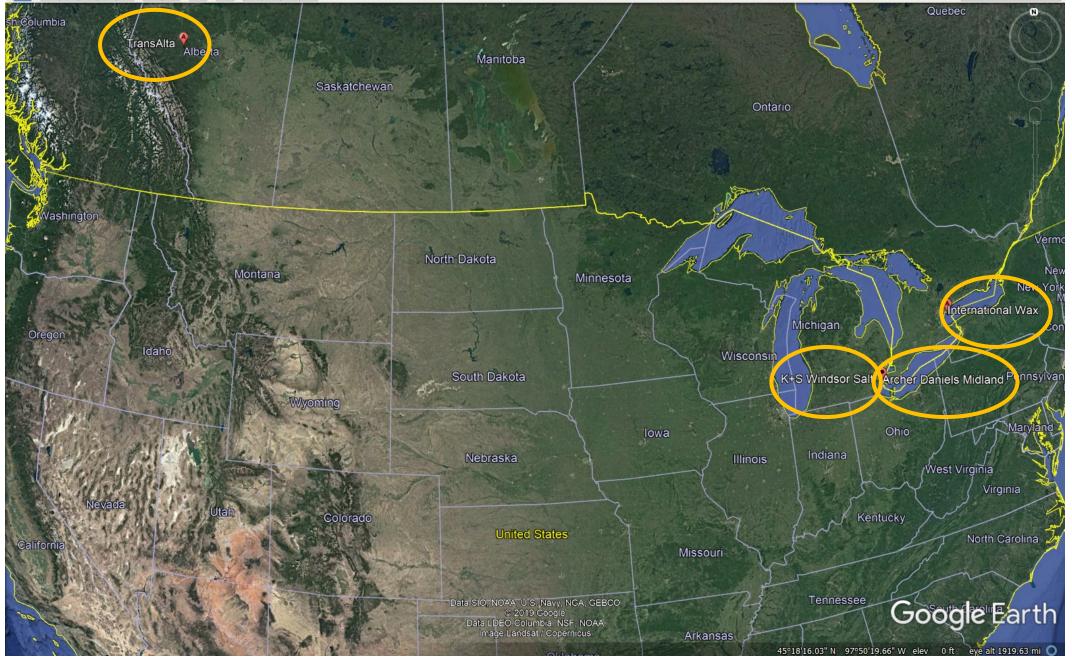
CHP Design Considerations for Cold Climates

Don't Stick Your Tongue on That Pipe!

Matt Lensink, CEM Engineering

Jonathan Coleman, Solar Turbines Canada Ltd.



A Caterpillar Company

Case Study: K+S Windsor Salt

(1) 3.5 MW Gas Turbine (Centaur 40) One One (1) Rentech Heat Recovery Steam Generator (R&V Burner) Emerson Vilter Fuel Gas Booster Compressor New 27.6 kV Electrical Switchgear Provides electricity and steam to on-site salt evaporation plant Electrically islanded operation

Case Study: K+S Windsor Salt

Case Study: TransAlta, Alberta

W Gas Turbines (Titan 1 (2) Rentechar Heat Recovery Steam Generators (R&V Burner) ne (1) 9 MW Caterpillar Reciprocating Endine New Electrical E-House Provides electricity and steam to host gas processing site Market participant in Alberta power market

Case Study: TransAlta, Alberta

Case Study: International Wax

Generator

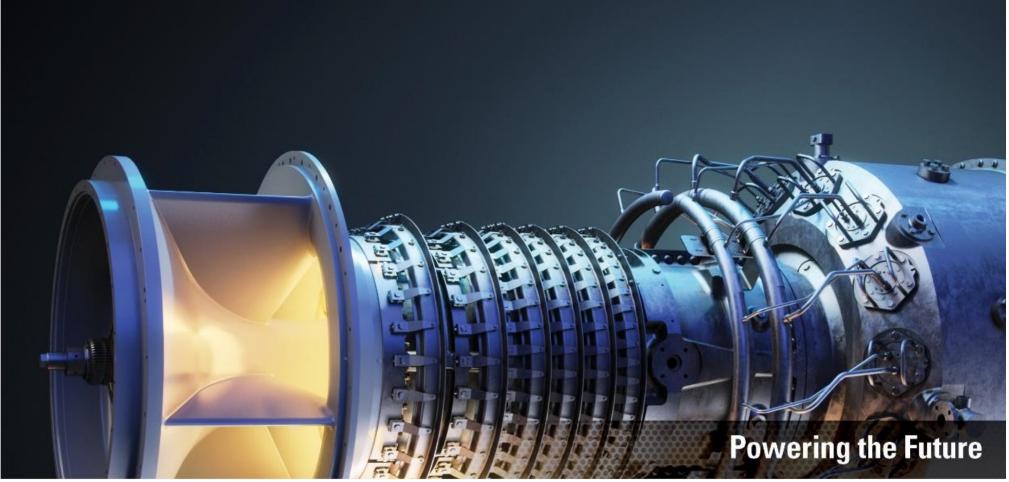
- One (1) 3.5 MW Gas Turbine (Centaur 40)
- One (1) Rentech Heat Recovery Steam
- Emerson Vilter Fuel Gas Booster Compressor
 - New 5 kV & 27.6 kV Electrical Switchgear
 - Provides electricity and steam to on-site
 - Electrically islanded operation
 - Installed inside industrial building

-7-

Case Study: International Wax

Case Study: Archer Daniels Midland

- Two (2) 3.5 MW Gas Turbine (Centaur 40)
 Two (2) Rentech Heat Recovery Steam Generators
 New Condensing Economizer & Natural Gas Blackstart Generator
- New 15 kV Electrical Switchgear
- Provides electricity and steam to on-site cornersing plant
 Electrically islanded operation


Case Study: Archer Daniels Midland

Cold Weather Package Design Options

Solar Turbines

Cold Weather Package Design

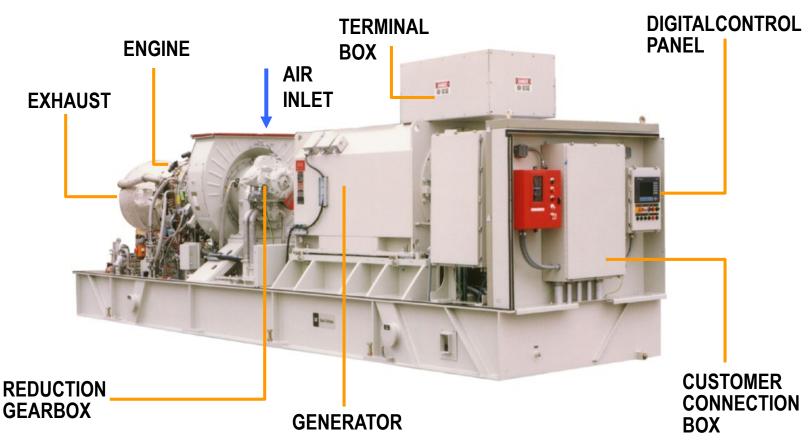
- Combustion power generation equipment is installed in many different geographic locations, some of which expose the equipment to temperature extremes.
- -4°F (-20°C) is the minimum temperature guideline for the standard Solar package. The following table lists the temperature limits for standard packages. Generally, packages can operate within these limits without any special modifications.

Temperature Range

Caterpillar: Confidential Green

	Lower Limit		Upper Limit	
	°F	°C	°F	°C
Packages with Offskid Control Systems	- 20	- 29	120	49
Packages with Onskid Control Systems*	-4	-20	120	4 9
Control Console (Offskid and Onskid)	-4	-20	140	<mark>6</mark> 0

Standard Generator Package Scope of Supply


- Base Frame
- Driver, Gearbox & Generator
- Auxiliary Systems
- Combustion Air Inlet Filtration
- Control Panel & HMI

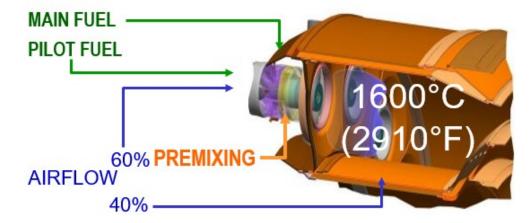
Typical Options

- Enclosure & Ventilation
- Fire Suppression
- Exhaust System

CampusEnergy2020

THE POWER TO CHANGE

Cold Weather Requirements


STANDARD	40°C (104°F) to	-21°C (6°F) to	-31°C (-24°F) to	< -40°C (-40°F)
STANKDAFED	40 ² €° (-104°∓) to	-321@(d-fe3°F))to	-491°C((424F) to	
PACKAGE	-20°C (-4°F)	MODIFIED FO ACEUDE	-40°C (-40°F)	< -40°C (-40°F)
ON SKID CONTROL ENCLOSURE PANHACKARDOS		HELOTALBAIRALEURINGS PATC SWITCBUACKO2028PP) TO	E _¥E92T(L24T#P(N LO -40°CE E-2407BBBCODEN	UVERS CONTROL FOR
HMI BASEPLATE		RECIRCULATE AIR, AND OLDWEATHER BASEPE	OR STATOR, EXCITER	NO DYNAMIC OIL CIRCHI ATION AND
ODP GENERATOR CO2 CABINET ENGINE	STANDARD STANDARD LOW AMBIENT ENGINE	COLD WEIATHERAK	INAL BOX	WARM ROOM AIR MUST PELIDIVOED SHOULD BE SUPPLIED AVA II DERMASIARTUP
HANDLING KIT DUCTING TURBINE AIR	HANDLING KIT	LOW AMBIENT	SILICON SEALANT	ADD INSULATION & HEAT WRACING TO
ENHANGET LUBE OIL COOLER BELLOWS		OVERSIZED CO OOD/VFD OPERATED I	DLD WEATHER UBE GTA AQESSER TEEL	CONTRACTOR ADRUVER SYSTVEAMIN MOTEN BUILT-II
ENCLOSURE				HEATERS
CONTROL PANEL FILTER	STANDARD PANELER	FILTER LOW AMBIEN	T CONTROL PANEL FILT	TER SYSTEM

Standard Cold Weather Logic Below 0°F (-18°C)

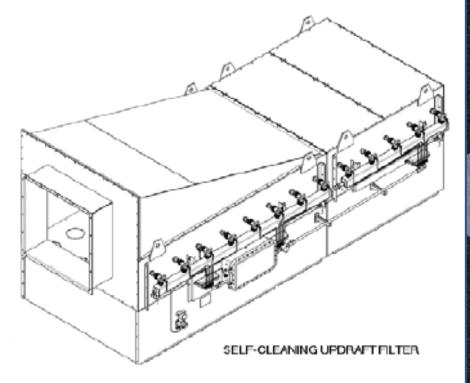
- Increased fuel pilot flow required for flame stability to prevent combustor rumble
- For DLE cold ambient emissions, the turbine must be configured with the appropriate combustion hardware and software.

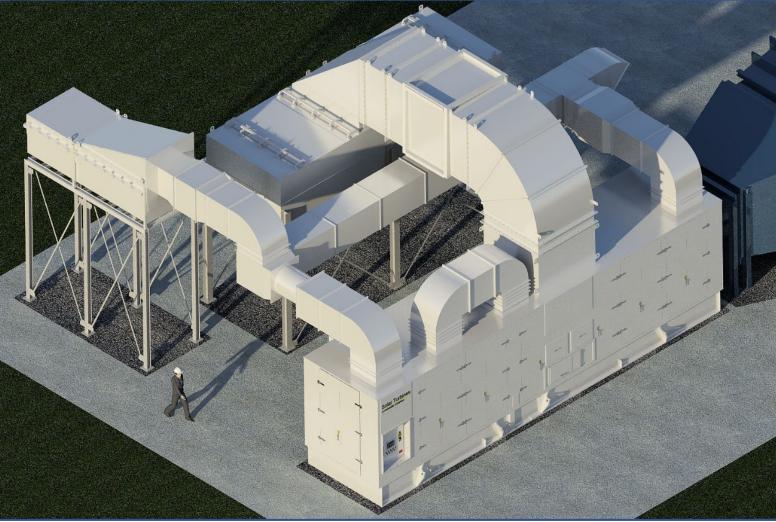
Gas Turbine SoLoNOx Combustion

Pilot Active Control Logic

- Uses active oscillations feedback to increase pilot fuel & reduce oscillations
- Offered for DLE emission requirements of 42 ppm NOx on natural gas from below 0°F (-18°C) to -20°F (-29°C)

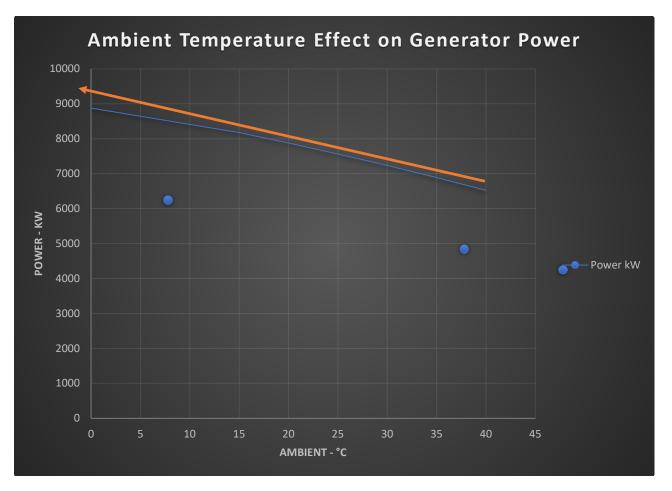
Caterpillar: Confidential Green


Provides reduced emissions below -20°F (-29°C) on natural gas only



Air Flow Design Changes

- Turbine Air Inlet
- Enclosure ventilation


Caterpillar: Confidential Green

Generator Design Changes

Proper Generator Selection

Caterpillar: Confidential Green

Questions?

Matt Lensink

Chief Operating Officer matt@cemeng.ca

Jonathan Coleman

Senior Account Manager Power Generation

coleman_jonathan@solarturbines.com

Solar Turbines

A Caterpillar Company

