Differential Pressure Control

Hydronic College by IMI Hydronic Engineering Inc.
Why differential pressure control?

- Control valves work with improved authority, therefore their performance is improved.
- Reducing pump head and keep high controllability in the system.
- Control valves are pressure relieved, so low force (= lower cost) actuators can be used.
- Noise in control valves is reduced or removed completely.
- Based on stabilized differential pressure across the circuit, the flow is limited.
- Circuits is a pressure independent modules. Which means:
 - That the changes in other parts of the system do not affect the circuit.
 - Large plants can be balanced module by module independently.
 - New modules can be added to the system without rebalancing.
Differential pressure variations

Dallas

Thermal plant load [%]

% of heating season below this load
58%

% of cooling season below this load
68%

Heating

Cooling

Power

Flow

Dp piping

At constant supply water temperature

Pressure drops are reduced to 4% of their design value.

\[\Delta P \propto q^2 \]
Control loop

\[x = U - x_0 - 10 \text{ volts} \]

\[0-100\% \]

\[0-100\% \]

\[0-100\% \]

Sensor

Controller

Actuator

Valve

Terminal

Power output

Room

Set value U

\[\Delta x = U - x \]

Signal

Lift

Flow

Power output

\[x = \text{controlled value} \]

Terminal unit characteristic

Control valve characteristic

Flow in%

Power output %

Lift h in %
Control valve authority

The authority (β) formulates how much the differential pressure builds up on the control orifice of a control valve when it is closing.

$$\beta = \frac{\Delta P_{\text{Control valve fully open and design flow}}}{\Delta P_{\text{Control valve fully shut}}}$$

Its value indicates how effectively the control valve can reduce the flow while it is closing.
2-way control valve authority (variable flow)

Variable, depends on flows in the piping,
thus also on the opening of all the other control valves.

\[\beta = \frac{\Delta P_{\text{control valve fully open and design flow}}}{\Delta P_{\text{control valve fully shut}}} \]

Constant as soon as the valve Cv is chosen (\(\Delta p_V\)).

In a variable flow distribution, the authority of a control valve is variable.
Distortion of valve characteristic

The lower the authority, the larger the Δp variations on the control valve, the larger distortion of the valve characteristic.

Control valve with Equal-percentage characteristic (EQM)
Variable authority of 2-way control valves

Authority in design conditions:
\[\beta \approx \frac{5}{5+7} = 0.42 \]

Authority at half-load:
\[\beta = \frac{5}{5+7+0.96 \times 21} = 0.15! \]

Low flow (half-load):
0.96*21 ft + 0.96*7 ft \(\approx\) 26.9 ft in excess in the valve at half-load

5 ft in the valve
7 ft in the circuit

VSP does not allow to compensate for all local Dp variations in the plant

H: 33 ft
Max. flow (design conditions) \(\Delta p_{Pipe}: 21 \text{ @ design flow}\)
H: 33 ft
Pump head
Control valve oversizing

Control valves are commercially available with Cv values increasing according to the Reynard series:

\[
\begin{array}{ccccccc}
Cv: & 2.0 & 3.0 & 4.0 & 5.0 & 10 & 20 & 30 \\
\end{array}
\]

Flow to a FCU of 29 gpm, \(\Delta p\) 5 psi and 2 psi in connecting pipes. the commercially available control valves create a design \(\Delta pV\) of:

<table>
<thead>
<tr>
<th>Cv</th>
<th>(\Delta pV) [psi]</th>
<th>(\beta_{\text{design}})</th>
<th>(\Delta H) [psi]</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>7</td>
<td>0.5</td>
<td>14</td>
</tr>
<tr>
<td>20</td>
<td>2.0</td>
<td>0.0</td>
<td>9.0</td>
</tr>
<tr>
<td>10</td>
<td>8.4</td>
<td>0.5</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>23</td>
<td>49</td>
</tr>
</tbody>
</table>

Conclusion:
Control valves are generally **oversized**.
Effect of Δp variations on controlled heat output

Δp variations distort the characteristic of the control valve
\Rightarrow the nonlinear characteristic of the terminal unit is no longer compensated

Valve characteristic:
$EQM = 0.33 \quad R = 25$

Rangeability
area of the control valve
Noise

Rule of Thumb:
Static pressure at the inlet of the valve should be at least twice the pressure drop in the valve.

A cavitating valve is shown in the diagram, along with a graph of sound pressure level [dB].
Closing of control valves

According to its design, each valve has a required actuation close-off force or torque that depends on:
- Tension of the return spring, if any,
- Friction with o-rings and seals,
- Differential pressure applied on the plug.

Each control valve/actuator combination has a certain close-off differential pressure

<table>
<thead>
<tr>
<th>Type</th>
<th>Conn. DN in.</th>
<th>Kv (mbar⁻¹)</th>
<th>Cv (m³/h/psi)</th>
<th>MZ18L / 18A / 18B 136 N (30 lb) Max. ΔPc kPa psi</th>
<th>MZ10T 96 N (22 lb) Max. ΔPc kPa psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>VZ22</td>
<td>15 ½"</td>
<td>0.16</td>
<td>0.19</td>
<td>1600 232</td>
<td>600 87</td>
</tr>
<tr>
<td>VZ22</td>
<td>15 ¾"</td>
<td>0.25</td>
<td>0.29</td>
<td>1600 232</td>
<td>600 87</td>
</tr>
<tr>
<td>VZ22</td>
<td>15 ½"</td>
<td>0.40</td>
<td>0.47</td>
<td>1600 232</td>
<td>600 87</td>
</tr>
<tr>
<td>VZ22</td>
<td>15 ¾"</td>
<td>0.63</td>
<td>0.74</td>
<td>1600 232</td>
<td>600 87</td>
</tr>
<tr>
<td>VZ22</td>
<td>15 ½"</td>
<td>1.00</td>
<td>1.17</td>
<td>1200 174</td>
<td>180 26</td>
</tr>
<tr>
<td>VZ22</td>
<td>15 ¾"</td>
<td>1.6</td>
<td>1.9</td>
<td>1200 174</td>
<td>180 26</td>
</tr>
<tr>
<td>VZ22</td>
<td>20 ¾"</td>
<td>2.5</td>
<td>2.9</td>
<td>400 58</td>
<td>50 7.3</td>
</tr>
<tr>
<td>VZ22</td>
<td>20 ½"</td>
<td>4.0</td>
<td>4.7</td>
<td>400 58</td>
<td>50 7.3</td>
</tr>
<tr>
<td></td>
<td>A-AB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VZ32</td>
<td>15 ½"</td>
<td>0.25</td>
<td>0.29</td>
<td>800 116</td>
<td>500 73</td>
</tr>
<tr>
<td>VZ32</td>
<td>15 ¾"</td>
<td>0.40</td>
<td>0.47</td>
<td>800 116</td>
<td>500 73</td>
</tr>
</tbody>
</table>
The differential pressure across control valves must not vary too much.
Control valve authority

To achieve good control it’s recommended to fulfill two rules on authority:
1. Size the control valve with a Cv with
 \[\beta_{\text{design}} \geq 0.5 \]
2. Ensure that \(\beta_{\text{min}} \geq 0.25 \)

\[
\Delta p_V \geq \Delta p_C + \Delta p_{\text{pipe}} + \Delta p_{\text{STAD}}
\quad \text{or} \quad \Delta p_V \geq 0.5 \times \Delta H
\]

\[
\beta_{\text{design}} \geq 0.5
\]

\[
\Delta p_V \geq (\Delta p_{\text{piping}} + \Delta p_C)/3
\quad \text{or} \quad \Delta p_V \geq 0.25 \times H
\]

\[
\beta_{\text{min}} \geq 0.25
\]
Improved control by correct control valve sizing

IDEA

Ensure design authority of at least 0.5 and minimum on 0.25 in all control valves in the worst conditions.

\[\beta_{\text{design}} = \frac{\Delta P_{\text{Control valve fully open and design flow}}}{\Delta H} \]

\[\beta_{\text{min}} = \frac{\Delta P_{\text{Control valve fully open and design flow}}}{H} \]

Rule no 1:
For obtaining a design authority of 0.5:

\(\Delta p \) in control valve must be \(\geq 0.5 \times \Delta H \)

Since \(\Delta p \) circuit = 7 ft,
\(\Delta p \) in control valve must be \(\geq 7 \) ft

Final pump head = 40 + 7 = 47 ft

\(\beta_{\text{design}} = \frac{7}{14} = 0.5 \) but
\(\beta_{\text{min}} = \frac{7}{47} = 0.15 \)

Rule no 2:
For obtaining a minimum authority of 0.25:

\(\Delta p \) in control valve must be \(\geq 0.25 \times H \)

Since \(\Delta p \) piping + circuit = 33 + 7 = 40 ft,
\(\Delta p \) in control valve must be \(\geq 13.3 \) ft \((40/3)\)

Final pump head = 40 + 13.3 = 53.3 ft

\(\beta_{\text{design}} = \frac{13.3}{20.3} = 0.66 \) and
\(\beta_{\text{min}} = \frac{13.3}{53.3} = 0.25 \)
Improved control with reduced pumping energy

Control valve sizing with Dp control:
For obtaining a design authority of 0.5 and min of 0.25:

Δp in control valve must be $\geq 0.5 \times \Delta H$ and ≥ 0.25 of stabilized Δp.

Since Δp piping + Δp circuit = 7 ft,
Δp in control valve must be ≥ 7 ft

Final stabilized $\Delta p = 7 + 7 + 2 = 16$ ft
$\beta_{\text{design}} = 0.50$ and $\beta_{\text{min}} = 0.44$

Final pump head = 31 + min Δp of DpC (2 ft) + 2 + 7 + 7 = 49 ft
Simulation
Dp controller position

Depending on project structure, Dp control will be applied:

On risers,

On branches,

On control valves.
Bigger plant with different Dp control configurations
Find the best Dp control solution…

First, decompose the plant into modules
Case Studies

The savings are real!!
Hong-Kong PolyTech University

- Renovation of 2 University buildings with a total of 106000 ft² (9840 m²)
- Installed cooling capacity:
 - Building 1: 1452 tons refrig.
 - Building 2: 1730 tons refrig.
Local University campus **building 1** – chiller saving

- Variable secondary flow with differential pressure bypass
- Dp controllers at on-off control FCU groups and PAU/AHUs and re-balanced
- Annualized 22% chiller energy saving

Chiller Power Input vs. Cooling Load

- **Power input [kW]**
 - 500
 - 450
 - 400
 - 350
 - 300
 - 250
 - 200
 - 150
 - 100
 - 50
 - 0

- **Cooling load [ton refriger]**
 - 341
 - 284
 - 227
 - 170
 - 113
 - 56
 - 2009
 - 2010

Cooling load [ton refriger]
Local University campus building 2 – chiller saving

Variable flow primary-secondary system

Addition of Dp controllers at FCU groups zones and pressure independent control valves for PAU/AHU and re-balanced

Annualized 16.5% chiller energy saving
Questions?