

Enhancing Energy Efficiency in Dairies

Mr. Anshuman Pandey, Lead Application Engineer OPRA Turbines International B.V apa@opra.nl +31621154093

Trecession

212 12 10 10 1

times in the local day

Dairies: Introduction

- Dairy: Processing of animal milk
- Dairies are typically located in a dedicated farm
- Energy intensive process
- Energy accounts for 2-3% of production costs
- Focus on minimised use of energy
- Possibility for Cogeneration and Trigeneration
- Product purity and energy security is a must

Dairies: Manufacturing Process

Dairies: Market Distribution

- Worldwide production 800 million tons per year,
- Increase by 50% in 30 years
- Worldwide leaders are USA, EU, China, India and Brazil
- European leaders are Germany and France

Milk produced by region

Dairies: Energy Distribution

- Specific Energy Consumption:
 - Amount of energy required to produce 1kg of milk
- Heat to Power ratio favorable for Combined Heat & Power

Utilities	Energy level
Steam	Low Pressure Saturated Steam (217 Psi [15 Bar] @ 388°F [198°C])
Chilling	Cooling at temperatures between 42°F [6°C] to 77°F [25°C]

Dairies: Energy Consumers

- High thermal energy consumption \rightarrow natural gas:
 - Evaporation and Spray Drying: Milk powder production
 - Cleaning In Place (CIP)
- High electricity consumption \rightarrow grid:
 - Refrigeration
 - Compressed air
 - Auxiliaries
- Anaerobic wastewater treatment
 - Digester gas/ Biogas (Siloxanes & H2S)
 - Free fuel

Combined Heat and Power (CHP) increases efficiency

- Packaged and simple solution
- **Reliable** power generation

Independency, Reliability, Availability & Profitability

OP16 integration in dairies

References & Feedbacks

- OP16 already implemented in German Dairy Industry
 - Käserei Champignon Hofmeister GmbH & Co. KG: Manufacturer of high-quality dairy products
 - Annual production capacity: 423 M kg milk and 568 M kg annually whey processed
- OP16 used in cogeneration mode
 - OP16-3B operating on 24/7 grid mode
 - Exhaust used for steam generation using supplementary firing
 - Steam generated at 40 bar in heat recovery boiler

Dairies: Feasibility Study

Dairy Size	210 million kg milk
Electricity Demand	1,876 kWe
OP16 Exhaust Heat	15 MMBTU [4,500 kWt]
Sat. Steam production	14,000 lb/hr [6 tph] 174 Psia [@12bar]
Natural Gas Price	3.3 \$/MMBTU
Electricity Price	0.08 \$/kWh

- High Operational Savings: 22 to 30%
- ✓ Quick payback: 3.6 years

- Dairies ≤ 210 M kg of annual milk production is good fit for 1 OP16
- Dairies > 210 M kg of annual milk production is good fit for 1 or 2 OP16

*Trigeneration calculations are including the investment cost of absorption chiller.

** All calculations for Cogeneration and Trigeneration includes complete turnkey costs i.e. CAPEX and OPEX.

Thank You

Mr. Anshuman Pandey, Lead Application Engineer OPRA Turbines International B.V apa@opra.nl +31621154093

SPECIFICATION PRATTY