

Expanding Delta T in Enwave's Cooling System

Health & Safety

Teamwork

Expanding Delta T in Enwave's Cooling System

AGENDA

- Quick Intro to Enwave's DLWC System
- DLWC Capacity Breakdown and Constraints
- Typical Customer Site Controls
- Hybrid Control Strategy
- Summary & Other Applications

Introduction to Deep Lake Water Cooling

Innovation

Environmental Stewardship

Health & Safety

Teamwork

DLWC & "Polishing" Chillers

The Cooling System Today

Breakdown of Deep Lake Water Cooling (DLWC) Capacity & Constraints

Health & Safety

Teamwork

DLWC Nameplate Capacity

Original Nameplate Capacity	CHWR (°F)	CHWS (°F)	Flow (GPM)	Design Capacity (Tons)
DLWC Capacity	56.0	41.5	69,400	42,000

In reality, the Nameplate Capacity is rarely A reduction in nameplate capacity both: fully utilized in any given hour of the year - Increases Variable Operating Costs

Season	Reduces TotalnBystem Cap On Peak Capacity Off P (Tons)	eak Capacity (Tons)
Summer	these Variah	34,500
Spring/	Fall 37,500	27,000
Winter	21,000	17,500

DLWC Nameplate Capacity

Health & Safety

Typical Customer Site Control

Health & Safety

Teamwork

Typical Customer Site Control

Typical Customer Site Control

Realities of Customer Sites

- Good Performers and Bad Performers
- Variations between On-Peak and Off-Peak
- Variations Seasonally
- Buildings are Never in a Steady State (Valves fail, Coil & HX performance degrades, etc.)

System CHWR Temperatures as a Result...

TARGET	Winter		Spring		Summer		Fall	
-	On-Peak	Off-Peak	On-Peak	Off-Peak	On-Peak	Off-Peak	On-Peak	Off-Peak
56	51	50	53	51	54	53	52	51

Realities of Customer Sites

Realities of Customer Sites

Opportunities for Improvement

At Low Delta T Sites

- Adjusted Set-points and Minimum Flow Bypasses are somewhat arbitrarily set to satisfy worst case conditions
- Missing out on opportunities when buildings are performing better

At High Delta T Sites

- Opportunity to realize higher CHWR temps than 56°F on Peak
- Seasonal Customer side CHWS requirements can be leveraged to drive building CHWR temperature higher

Hybrid Customer Site Control Strategy

Health & Safety

Teamwork

Hybrid Control Strategy

Control Strategy Advantages

At Low Delta T Sites

- CHWR set-points below typical (ie. 56°F) become minimum thresholds instead
- The lower CHWR temperatures only occur when the building performance dictates

At High Delta T Sites

Increased Supplier Side CHWR
Temperatures are realized when building performance dictates

Benefits to Each Party

Customer Benefits

- Stability in Customer Side CHWS Temperatures
- Enwave has a vested interest in the delta T performance of the building
- Additional Customer Side monitoring

Supplier Benefits

- Customers CHWS temperature requirements are satisfied
- Higher CHWR temperatures are realized when available

Summary & Other Applications

Health & Safety

Teamwork

In Summary...

- To maximize DLWC Capacity at all times
- Supplier Side CHWR Temperatures need to be maximized
- CHWR Temperatures can be improved through a Hybrid Control Strategy

Other Applications & Considerations

Reducing District CHWS Temperature adds Capacity

- Added benefit of realizing higher Supplier Side CHWR temperatures when the district temperature is reduced
- Due to LMTD on the heat exchanger, approach narrows between the CHWR temperatures as the CHWS temperatures part
- DLWC Capacity increases as a result

Other Applications & Considerations

Increasing Heat Recovery in Hot Water Systems

- The inverse of the control strategy can be applied to Hot Water systems coupled with heat recovery or economization sources
- HWR temperatures would be minimized while maintaining Customer HWS temperatures at setpoint

Questions?

Health & Safety

Teamwork