Constructing a New Utility Tunnel on an Active Medical Campus

Walter Reed National Military Medical Center Bethesda, Maryland

Presenters

Darren Morton Whiting-Turner

Mark Johnson Whiting-Turner

Ken Balenske RMF Engineering

Description of Walter Reed

• History

- National Naval Medical Center 1939
- Expanded During WW2
- Walter Reed Scheduled to Close in 2005
- Combined with National Naval Medical Center In 2011
- Currently Serves as Medical Facility for Wounded Vets, Congress and President
- 243 Acre Campus
- Located In Bethesda, MD
- Now Known as the Walter Reed
 National Military Medical Center

Current Complex

Im

- Nearly 8,500
 Employees
- 2.4 Million SF
- Serves over One Million patients per year
- 288 Beds

Project Objective

- Site Enabling for a New 600,000 sf Hospital Facility Includes Demolishing Buildings 2, 4, 7, & 8
- Construct New Modern Medical Facility
 - Two Phase Construction
 - Temporary Medical Facility
 - 500 ft. Pedestrian Tunnel
- Relocate Utilities to Enable Demolition
 - Base Wide Communications Hub
 - Primary Medium Voltage Electrical Feeds to Most of the Campus
 - Demolished 2 Major Sewer and Storm Drain Pipes
 - Chilled Water and Steam to Serve Several Buildings
 - Total Construction Cost \$38,490,000

- Constructability Reviews
- Cost Control
- Engineer Support During Construction
 - UFC/Code Requirement Compliance
 - Timely and Cost Effective Resolutions
 - Designer on Board for Owner Coordination

Project Requirements - Tunnel

- 1200 Feet of Tunnel
- Up to 20 5" Medium Voltage Ducts
- Up to 36 4"
 Communications
 Ducts
- 2 8" Redundant Steam Pipes
- 6" Condensate Pipe
- 6" Fire Suppression
- 4 4" PEVCO

Project Requirements – Other Utilities m

- 1500 ft. Storm Drain
 - 600 Jack &Bore
- 1300 ft. Sanitary
 - 600 ft. Jack
 and Bore
- 250 ft. Water Main
- 900 ft. of Gas
- 220 ft. Electric Ducts
- 1100 ft.
 Communications
 Ducts

Relocation of Electric and Communications m

- Trench in Crawl Space of STEM
 - Medium Voltage Feeders
 - Over 80 Communications Cables
 - New Tunnel Will Cut Trench in Half

Traffic Control

Pedestrians

- 3 Large Parking Garages Adjacent to Active Construction Area
- Significant Nos. of Patients, Staff and Visitors
- Vehicular
 - Close Roads
 - Active Garage Entrances

Future Pedestrian Tunnel Crossing

lm

Under an Existing Building

Im

Construction Challenges - Rock

- Extremely Hard >20,000 psi
- Extensive in Excavation Below 20'
- 5 Months to Complete 775 Cubic Yards of Excavation

Line Drill 3-31-2016 Hoe Ram 4-20-2016 Hoe Ram 6-15-2016 Close!! 7-13-2016

m

Construction Challenges - Rock

m

Construction Challenges Jack and Bore m

- Rock Boring Multiple Breakdowns, 6 months to complete two (2) 270LF crossings
- Dewatering
- Shoring-of-Excavation (SOE) Conflicts

Construction Challenges – Site Logistics m

- Boring & Tunneling Took Place Between Occupied Buildings
- Pedestrians and Vehicular Traffic
- Laydown Yard ½ Mile from Site
- Site broken up between 6 main areas and miscellaneous interior work

Construction Challenges - Groundwater m

- Utility Tunnel designed to be completely enclosed (no exterior sumps)
- Multiple areas not able to be immediately enclosed resulted in waterproofing replacement
- Ground spring (or broken water line?) required fiberglas sump insertion and chemical grout injection along with multiple concrete re-pours.

Construction Challenges – Existing Utilities m

- Condition of existing utilities on a 80 year old installation was a major headache
- More utilities than not were missing from as-builts, and ended up being found the hard way!
- Tie-ins and shut-downs had to be carefully sequenced to allow operations to be maintained continuously

Construction Challenges - Scheduling m

- Sequencing had to be well defined during preconstruction to identify the correct critical path
- "Domino" effect plagued the job for the duration of the project
- Quality control, labor management and safety inspections became challenging with so much going on

Construction Challenges Underpinning m

- Building structural asbuilts were not accurate, and required quick redesign of shoring system to allow the tunnel to continue on schedule
- Underpinning pits were required where tunnel traveled underneath existing buildings
- Innovative shoring solution required underneath connectors with turn-down slabs and caissons

Revit Model

Finished Project

Questions & Answers