

Portsmouth Naval Shipyard -History of a Microgrid

James B. Redden, P.E. Vice President – Energy Assets

Troy Wilsey Project Developer

History of the Cogeneration Plant

- Phase 1
 - > Energy Efficiency
 - > Boiler Upgrades
 - > Distribution Upgrades
 - > Turbine #1
- Phase 2
 - > Turbine #2
 - > Diesel Generators
- Phase 3
 - > Water and Sewer Condensate Upgrades

PNS Electric Supply

Shipyard Electrical Demand (kW)

Problem and Microgrid Solution

Problem:

- > Shipyard CTG are overloaded when utility grid fails; trip off/on internal safeties
- > Not taking full advantage of significant on-site generation capacity for critical loads
- > Traditional load shedding schemes operate too slowly to save on-site generation

Solution:

- > Very high speed load shedding is required to maintain gas turbine generation stability under fault conditions
- > Microgrid Controls System (MCS) with intelligent fast load shedding

Major Benefits:

- > Enhanced mission security at Shipyard
- > Reduce substantial cost associated with lost production during power outages
- > Reduces preemptive self-generation dispatching and associated emissions

The Project was supported by grant from DoD Environmental Security Technology Certification Program.

Technology/Methodology Description

- MCS / FLS
 - > GE C90 Plus
 - > F35 Feeder Protection Relays
 - > D400 Remote Terminal Unit
 - > GPS Controlled Clock
 - > MODBUS via Ethernet and Fiber

GE – C90 Plus

GE – F35

• BESS

- > Battery, 580 kWh Li-Ion
- > Inverter, 500 kW Bi-Directional
- > Site Controller
- > MPLS Network, ISO Router & RTU

Technology/Methodology Description

Sub 2

Portsmouth Naval Shipyard Fast Load Shed System Data and Control Scheme

Fast Load Shed Approach -- Example

Priority No.	Load Served	kW
0	Never Shed (e.g. Power Plant Aux., Air Comp.)	3,000
1	Dry Dock #1	2,000
2	Dry Dock #2	1,200
3	Bldg 174	300
4	Weld Shop	500
5	Engineering Support Bldg	700
24	Dry Dock #3 (Empty)	300
25	Substation 5	200
26	Bldg. 238	500
27	Substation 7	400
Total		13,000

Fast Load Shed Response Time

#	Action	Response Time (mS)
1	Loss of Utility (LOU) detected by Relay F-35-1 at incoming utility breaker	Time "0"
2	F-35-1 sends LOU signal to C90	<1 ms
3	Calculations by C90 to determine which loads to shed; send System Island command to F-35 Relays controlling load breakers	<1 ms
4	System Island command received at farthest F-35 breakers through fiber optic switches	1.2 ms
5	Load Shed command issued by F-35 relays	2.0 ms
6	Breakers Open	32 ms
	Total Time from LOU detection to Load Shed	36.4 ms

Performance Verification Testing

Simulation Testing

- > Disable Tripping on Critical Feeders Open Trip output on Test Switches
- > Establish Summer and Winter Micro-grid Configurations
- > Simulate a Loss of Power Initiation
- > Outcome: Issues with load shed calculations. Corrections made and successfully retested.

Live Test

- > Pull the plug on the utility. Observe Operation. Restore Distribution System
- > Outcome: Performance as expected Success !!
- > New Question: What happens under actual fault conditions ??

Performance Data – LIVE Events

Event 1 – June 21, 2016

- > Major failure of Air Gap Switch just outside Shipyard on Utility pole; direct fault to ground on one phase
- > Utility Breaker Opened initiating FLS per design
- > CTG #2 Tripped on a ground fault protection . . .1 ms before Utility Breaker opened
- > Shipyard went black

Event 2 – July 18, 2016

- > Loss of Utility, line to ground fault on utility side
- > Back-up Diesel Generators were operating on scheduled monthly run at time of LOU
- > FLS operated and CTG maintained generation Successful Event

Performance Data – LIVE Events

HMI Trend Display – July 18, 2016 LoU Event

Important Issues to Address

Identify Better Means for Initiating FLS

- > Fast enough to protect generating assets
- > Not so fast to produce nuisance trips

Ideas

- > Trigger based on Central Maine Power (CMP) Utility Recloser
- > Reverse power relay
- > Review / coordination of settings between utility breaker and CTG controls

Current and Future Phases

- Address tripping scheme
- Expand number of breakers under shed control
- Add more on-site generation to serve more loads
- Add substantial BESS to bridge to back-up diesel generators
- Potential use of expanded BESS capacity for participation in ISO-NE ancillary services market

Thank You – Questions?

Your Trusted Sustainability Partner.