

THE ROLE OF ENVIRONMENTAL ATTRIBUTES FROM CHP & CARBON REDUCTION PROJECTS ON A COLLEGE CAMPUS

Thomas R. Jacobsen

MULTIPLE ATTRIBUTE VALUE STREAMS

- SOURCES CHP, Renewable Energy, Green Gas & Carbon Reduction Projects generate Environmental Attributes
 - Campus attribute generator
 - Off-campus external projects important
- VALUE Colleges & Universities have optionality in extracting benefits from Attributes (how to account?)
 - Revenue source (\$\$)
 - Financial support for what use?
 - Campus projects (clean energy or other)
 - Mechanism for GHG reduction and clean energy accounting
 - Retire? Sell? Caution, double counting
 - Investment vehicle to support external projects diversify endowment?
- **CHALLENGE** How to optimize Environmental Attributes? Greatest value lies in integration with diverse campus goals

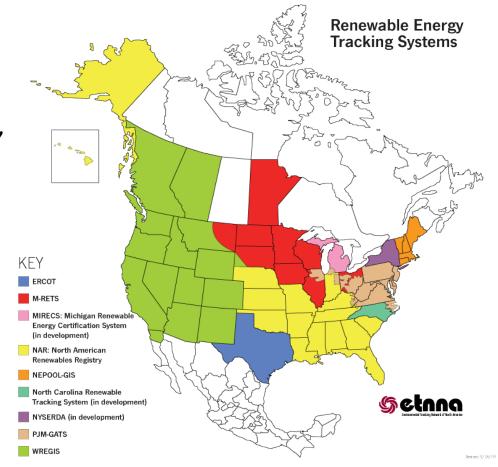
Blue Delta Energy

ENVIRONMENTAL ATTRIBUTE LANDSCAPE

Diverse & rapidly changing due to cities, states & voluntary demand

- Renewable Energy Credit (REC) = 1 MWh of renewable energy generated
 - Electricity wind, solar, CHP, biogas, hydroelectric
 - Renewable Thermal district energy, solar, biomass, geothermal
- Renewable Gas Credits = Attribute from RNG, in MMBtus upgraded, pipeline quality biogas for energy use/renewable thermal
 - Landfill methane capture, sewerage (WWTPs), farms, food waste (heating needs, not just for transportation)
 - Green Gas for utilities & end users college campuses
- Clean Peak Credits Massachusetts, with credit multipliers
 - Energy storage, new renewables, demand response

ENVIRONMENTAL ATTRIBUTE LANDSCAPE


RECs for more frequent generation - hourly?

Carbon Offset = 1 Metric Tonne CO2 reduced

- Landfill methane gas capture, forest management, animal waste
- 2018 Significant increase in voluntary offset demand

Renewable Fuels Credits – RINs, LCFS

Electronic Tracking Systems provide secure mechanism to create and manage attributes

ROLE OF ENVIRONMENTAL ATTRIBUTES FOR COLLEGES & UNIVERSITIES

How is an Attribute accounted for? Carbon Reduction Value? Revenue Generator? Investment?

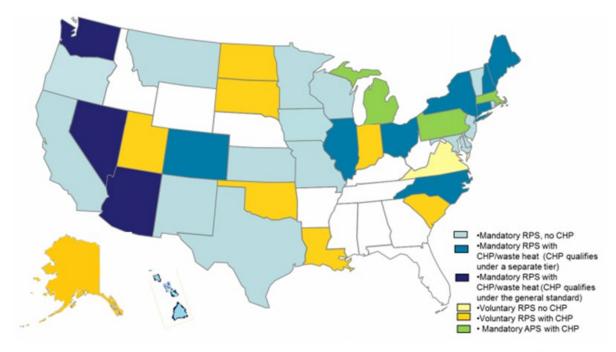
MULTIPLE BUCKETS

- 1) Created on site by clean energy & carbon reduction projects
 - RECs, Offsets, Offsets from RECs
 - Monetize use the markets to generate revenue for other campus projects, Green Revolving Fund
 - Cannot claim GHG reductions once attributes are sold.
 - Temporary, year-by-year means to leverage additional longer-term carbon reductions if revenue is used to fund even larger GHG reduction projects (net positive environmental benefit)
 - Swap exchange for higher carbon reduction value attributes (RECs for high quality carbon offsets)
 - Retire Some/all retired for sustainability goals using carbon reduction & clean energy reporting value

ROLE OF ENVIRONMENTAL ATTRIBUTES FOR COLLEGES & UNIVERSITIES

2) Created off-site & retired to meet annual sustainability goals

Voluntary RECs and offsets purchased to green annual electricity usage and offset GHG emissions


3) Created off-site & used as investment vehicle to generate revenue for endowment

- As attribute markets mature, increased liquidity = greater access & tracking ability, accountability & transactional ease
 - Scaling up of attribute exchanges (ie. airline focus)
- Diverse investment portfolio can span multiple technologies and projects carbon reduction, renewable electricity & thermal, transportation
- Longer-term investment in projects beyond volumes needed for retirement to meet campus carbon reduction goals
- Projects with co-benefits attributes for both retirement and investment

ENVIRONMENTAL ATTRIBUTES FROM CHP

- 29 States + D.C. have a Renewable Portfolio Standard (RPS)
- CHP and/or WHP called out in 20 states as eligible under RPS type program qualified to generate RECs or thermal equivalent (convert MMBTUs to MWh)

CHP IN RPS PROGRAMS

Eligibility can be divided into "typical CHP", "renewable fueled CHP" and "waste heat to power"

- CHP qualification varies based on factors including size, efficiency threshold and fuel use
- Some states may allow CHP to qualify if using an eligible, renewable fuel (ie. biomass) only, others allow natural gas as feedstock
- Natural Gas fired CHP qualified in both Connecticut and Massachusetts
 - CT Electric RECs only, overall system efficiency of 50% per quarter or fail
 - MA REC calculated based electrical and thermal output (1.5 multiplier over CT)

CHP REC REVENUE – 2 STATES, 1 TECHNOLOGY

CONNECTICUT - 3 MW QUALIFYING CHP UNIT		
Load (MW)	3.0	
Hours per Year	8,760	
Capacity Factor	75%	
Approximate Yearly REC Generation	19,710	
Net Generation (Remit 25%)	14,782	
Indicative 2020 Class III REC Value	\$22.00	
Annual REC Revenue	\$325,204	

CHP REC REVENUE – 2 STATES, 1 TECHNOLOGY

PENNSYLVANIA - 3 MW QUALIFYING CHP UNIT		
Load (MW)	3.0	
Hours per Year	8,760	
Capacity Factor	75%	
Approximate Yearly REC Generation	19,710	
Indicative 2020 Tier II REC Value	\$0.45	
Annual REC Revenue	\$8,869.50	

Pennsylvania CHP is an undervalued resource within the RPS structure

- Worth the effort & costs to register?
- What is the intention of this RPS tier?
- What is the battle to restructure?
 - Compete with waste coal and large scale hydro
 - PA has abundance of natural gas do the politics support increased usage Blue Delta Energy of gas in-state via CHP?

UCONN & CHP

UCONN QUALIFYING CHP UNIT		
Load (MW)	24.9	
Approximate Gross REC Generation/Yr	124,000	
Net Generation (Remit 25%)	93,000	
Indicative 2020 Class III REC Value	\$25.00	
Approx. Gross Annual REC Revenue	\$2,325,000	

- Main campus energy need 100% met with CHP
 - Technically tri-generation thermal via steam driven chillers is used in summer months
- Class III REC revenue into Green Revolving Fund for energy and water conservation efforts & projects which would otherwise not be funded

UCONN & ENVIRONMENTAL ATTRIBUTES

- Not claiming carbon reduction value of CHP (selling RECs & environmental claims)
 - Met 20% reduction Energy Use Intensity by 2020 goals through CHP & conservation efforts (partially funded by REC revenue) despite campus growth!

- UCONN not only creates RECs off-site generated RECs are purchased & retired to meet sustainability goals
 - 100% renewable power purchased for regional & health care campuses (TEXAS WIND RECs)
- More renewable self-generation under evaluation to meet aggressive goals by 2030
- January 2020 UCONN named world's 11th greenest institute of higher education worldwide (1 of 2 in U.S.)

CREATING CAMPUS CARBON OFFSETS

- Universities can create carbon offsets on campus and engage voluntary carbon market for carbon revenue stream
 - 2018 voluntary carbon demand Approx. 98.4 MM tonnes with market value of \$295.7 million, significant increase, tipping point for large growth?
 - Current Voluntary Carbon Offset Pricing average of approx. \$3/metric tonne, with "unique" projects up to \$6-\$8/tonne
- Methodologies developed for campus energy efficiency projects that reduce GHG emissions
 - Verra/VCS validation, verification and registration
 - LEED projects
 - Evaluates performance for new ee and re projects across campus using performance metrics

CREATING CAMPUS CARBON OFFSETS

- Ball State University teamed up with Chevrolet (2012) to create methodology
 - District-scale geothermal ground source heat pump (GSHP) heating and cooling
 - 2 energy stations, 47 buildings
 - Chevy committed to three year contract for offsets (110k)
 - More \$\$ for campus wide ee projects
 - Report sales accurately to avoid double counting income used to reduce GHG impact more greatly/at a deeper level in the long-term – sell for years up to "anchor year" – sell some, retire some....
- Carbon revenue can take from Business as Usual to GHG reduction leadership
- Valencia College, University of Illinois Urbana Champaign

BIOGAS/RNG ON CAMPUS

- Natural Gas use on campus fuel equipment, provide hot water & steam, affordable, supports energy resiliency
- Renewable Natural Gas (RNG)
 - Pipeline quality gas fully interchangeable with conventional natural gas
 - Anaerobic digestion most common (landfill gas, animal manure, wastewater, food waste in digester) creates biogas upgraded to RNG for common carrier pipeline injection
 - Mainly transportation (RFS, LCFS) increasingly replace natural gas (renewable thermal)
 - Diversity of gas supply provides more energy security
- Switch to RNG directly avoids carbon emissions, not by offsetting AFTER CO2 emissions have occurred
- Achieve carbon neutrality in gas consumption & thermal load, power EV stations
- Create and capture Carbon Offsets from certain projects
- Emerging Renewable Gas Attributes
 - Quantify benefits of RNG carbon reduction/neutrality, positive environmental impact, revenue stream

BIOGAS/RNG ON CAMPUS

University of California System

RNG as part of commitment toward 40% natural gas from renewables by 2025, buildings and vehicle fleet

Duke University

- approx. 50% of operations rely on natural gas
- teamed up with Google and Duke Energy to fund swine waste to energy anaerobic digestion project –
 receiving some of the carbon offsets for campus sustainability to meet GHG reduction goals

Middlebury College

Cow manure, locally sourced food waste – RNG via pipeline (50% of campus heating & cooling)

CONCLUSIONS

- Environmental Attribute landscape diverse & changing
- Quantifiable efforts toward campus clean energy & carbon reduction = measure, manage, monetize, swap, retire, invest
- Monetization of Attributes = no GHG reduction claims
 - Revenue stream can fund larger, long-term GHG reduction projects
- State policies influence value of Attributes
 - CHP could be better recognized with increased attention of placement within RPS structures
- Voluntary Carbon Market strong & getting stronger!
 - Important for campuses generating, buying, investing in offsets
- Questions? Viable addition to endowment strategies?

CONTACT INFORMATION

BLUE DELTA ENERGY, LLC

Thomas R. Jacobsen

458 Grand Avenue, Suite 201 New Haven, CT 06513 P: (713) 591-0070

tjacobsen@bluedeltaenergy.com www.bluedeltaenergy.com

