Central Plant Energy Management At The University of Arizona

Henry Johnstone Mark St. Onge

President GLHN Architects & Engineers, Inc. Assistant Director Utilities University of Arizona

Tucson, AZ

11 Million SF 60,000 Students Faculty Staff

3 Interconnected Central Plants

37 MW Peak Electric 26,000 Peak Tons 200 klb/hr Peak Steam

0.68 kW/Ton annual

Current Energy Spend \$14M Gas

\$14M Electric

THE UNIVERSITY of ARIZONA

Central Heating and Refrigeration Plant

- 12,000 Ton Cooling Tower
- 10,000 Water Chillers
- 800 Ton Glycol Chiller
- 6,400 Ton-hr Ice Storage
- 180,000 lb/hr Steam
- 7 MW GTG

Arizona Health Sciences Central Plant

- 8,000 Ton Cooling Tower
- 7,500 Water Chillers
- 155,000 lb/hr Steam
- 6 MW GTG

Central Refrigeration Building

- 13,000 Ton Cooling Tower
- 12,000 Water Chillers
- 2,400 Ton Glycol Chiller
- 20,000 Ton-hr Ice Storage

THE UNIVERSITY OF ARIZONA

Typical GTG: AHSC T60 Shown

Total Campus: TEP + GTG

2/24/2014

- Electric Service Provider: Tucson Electric Power
- Rate Schedule: Large Light and Power Time of Use Program (LLP-90)
- Format: On/Off Peak Consumption, kWh (Energy) + Demand, kW (Power)

	<u>On</u> Peak	<u>Off</u> Peak	
	Consumption	Consumption	Demand
Jan	14%	36%	49%
Feb	13%	37%	50%
Mar	13%	40%	47%
Apr	13%	36%	50%
May	17%	32%	52%
Jun	15%	34%	51%
Jul	17%	34%	49%
Aug	16%	33%	51%
Sep	16%	33%	51%
Oct	16%	38%	46%
Nov	14%	37%	49%
Dec	14%	36%	50%
	15%	35%	50%

Ratchet Cost:

 "75% of the maximum on-peak period billing demand used for billing purposes in the preceding 11 months"

Only a few hours where demand is above 20,000 kW

Peak Daily Demand Duration

- Operate plants in close parallel
- Ride out short duration peaks
- Activate standby gensets through mid duration peaks
- Enhance TES Operation

eDNA

Operate to Red Line
 11 Month Max

75% Max Load

Take Away

"You Can Not Control What You Can Not Measure"

- Completeness and Granularity of Electric Demand Data
- Reliable Data Requires Ongoing Meter calibration, Validation, Energy
- Operator Training Scrutiny
- Managing Loads
- Clear Visualization