

Track 2A Decarbonized District Energy Network for New Stanford Campus

Andrew Lau-Seim, Stanford University Colin Moyer and Mike Bové, Affiliated Engineers

Stanford Energy Operations

- Main Campus Replacement CEF
 Electric-driven heat recovery system
- Building Electrification
- Reliable Energy Supply
- Cost Effective
- Sustainable

Stanford Energy Operations

- Electricity
 - •250,000,000 kWh/yr
 - •435 locations
- Low Temperature Hot Water
 - •600,000 mmBtu/yr
 - 174 locations
- Chilled Water
 - •60,000,000 ton-hrs/yr
 - 147 locations
- Steam
 - •36,000 mmBtu/yr
 - 17 locations

- Staff of 42
- \$100M O&M Budget
- \$28M Energy Cost
 - \$26M Electricity
 - •\$1M Natural Gas
 - •\$1M Water

Stanford Energy Operations

- Stanford in Redwood City
 - New campus developed for 2,700 Stanford staff members
 - Allows main campus growth
- Extension of Stanford sustainability
- Demonstrates scalability
- Remotely operated

Stanford in Redwood City – Initial Concept

Stanford in Redwood City – Cooling Options

- Packaged DX air-cooled units
- Packaged DX water-cooled units
- Building-level hydronic cooling
- District hydronic cooling
- District hydronic cooling with partial-shift TES
- District hydronic cooling with full-shift TES

Life Cycle Cost Analysis – Cooling Options

Capital, Operations and Maintenance, Water, Energy, and Carbon NPC

Stanford in Redwood City – Heating Options

- Building-level hydronic boiler
- Central hydronic boiler
- Central heat recovery chiller

Life Cycle Cost Analysis – Heating Options

Capital, Operations and Maintenance, Water, Energy, and Carbon NPC

02/12/2020

Comparison of BAU to Selected Option

	Packaged DX Cooling Units and Unitary Hydronic Boilers	District Combined Heating and Cooling System with TES				
Lifecycle Carbon Emissions	31,600 MTCDE (Scope 1 and 2)	Scope 1 and 2 near zero carbon within two years when offsite green power is online				
		Minimal Scope 1 emitted by natural gas cooking and backup heating				
Present Value of Capital	\$32.5M	\$30.2				
Total Present Cost	\$77.8M	\$48.1				
		38% Savings				
Lifecycle Energy	430,000 MMBtu	140,000 MMBtu				
Consumption		67% Reduction				
Average COP	3.02	8.96				

Stanford in Redwood City – Master Plan

Stanford in Redwood City – Initial Development

Central Energy Facility

Separate Heating and Cooling (SHC)

Combined Heating and Cooling (CHC)

Campus Energy Flow

Annual Combined Heating and Cooling

■ HRC Heating ■ CHC Cooling ■ SHC Cooling ■ SHC Heating ■ Building Air Source Heat

25% of Cooling Demand is Recovered

60% of Heating Demand is Supplied by CHC

1 5 9 1317212529	2 6 1014182226	2 6 101418222630	3 7 1115192327	1 5 9 1317212529	2 6 10141822263	0 4 8 1216202428	1 5 9 1317212529	2 6 10141822263	0 4 8 1216202428	1 5 9 1317212529	3 7 111519232731
1	2	3	4	5	6	7	8	9	10	11	12
Month / Day											

Building Air Source Heat (BASH)

90

Annual Combined Heating and Cooling

■ HRC Heating ■ CHC Cooling ■ SHC Cooling ■ SHC Heating ■ Building Air Source Heat

25% of Cooling Demand is Recovered

60% of Heating Demand is Supplied by CHC

1 5 9 1317212529	2 6 1014182226	2 6 101418222630	3 7 1115192327	1 5 9 1317212529	2 6 10141822263	0 4 8 1216202428	1 5 9 1317212529	2 6 10141822263	0 4 8 1216202428	1 5 9 1317212529	3 7 111519232731
1	2	3	4	5	6	7	8	9	10	11	12
Month / Day											

Annual Combined Heating and Cooling with BASH

■ HRC Heating ■ CHC Cooling ■ SHC Cooling ■ SHC Heating ■ Building Air Source Heat

25% of Cooling Demand is Recovered

40% of Heating Demand is Supplied by BASH

60% of Heating Demand is Supplied by CHC

the second second second	5 9 1317212529	2 6 1014182226	2 6 101418222630	3 7 1115192327	1 5 9 1317212529	2 6 10141822263	0 4 8 1216202428	1 5 9 1317212529	2 6 10141822263	0 4 8 1216202428	1 5 9 1317212529	3 7 11151923273
	1	2	3	4	5	6	7	8	9	10	11	12
Month / Day												

CHC and BASH Benefits Across the Country

Building Exhaust Heat Recovery (BEHR)

CHC and BASH+BEHR Benefits Across the Country

Other Low Grade Heat Sources

- Building Air Source Heat (people, computers, lights, etc.)
- Lower temperature refrigeration on campus
- Engine coolant
- Building Exhaust Heat Recovery
- Irrigation or domestic water flow
- Wastewater influent/effluent flow
- Ambient air
- Solar thermal
- Electricity
- Adjacent industry
- Surface water
- Geothermal

Construction Completed in 2019

Lessons Learned

Ultra-low 110°F heating water supply temperature

- VAV reheat system control
- VAV reheat system selection
- Alternative building heating strategies
- Domestic hot water
- Other heat sinks

Any heat pump system

- Refrigerant compressors
- Differential temperature
- Supply to return bypasses
- Three way valves
- Low-grade heat sources
- Thermal storage

COP of in Subcritical Two-Stage Vapor Compression Cycle with 40°F LEWT

Questions?

- Andrew Lau-Seim, Stanford University (lauseim@stanford.edu)
- Colin Moyer, Affiliated Engineers (cmoyer@aeieng.com)
- Mike Bové, Affiliated Engineers (mbove@aeieng.com)

