

MEP Associates, LLC

The Evolution of Geothermal through Campus Conversions

Reducing Energy Cost and Optimizing Efficiency

PRESENTED BY

Jeff Urlaub, PE

Principal | CEO

jeffu@mepassociates.com

Brian Urlaub, CGD
Director of Geothermal Operations
brianu@mepassociates.com

Agenda

- Master Planning Process
- Miami University Case Study
- > Commissioning / Forensics
- Lessons Learned
- > Questions?

Campus Master Plan Experience

Campus Conversions to High Efficiency and Low Carbon

Master Planning Process

- Data and Information Gathering
- Develop Thermal Profiles
- Selecting Equipment
- Selecting Distribution System
- Selecting Geothermal Heat Exchanger

Data and Information Gathering

- Work with the Client to Analyze
 - Project energy needs
 - Site conditions / building information
 - End user goals and drivers
 - Utilization
 - Space concerns
 - · Current infrastructure
 - Master planning
 - Utility information
- Existing or New Buildings
 - Review Existing infrastructure
 - Site Plan
 - Utility Drawings
 - Steam-to-hot-water
 - Building level metering
- Understand the FTE's to Operate Existing CEP
- Review All Future Master Planning / Expansion Plans

Developing Thermal Energy Profiles

- Energy Modeling and Utility Metering
 - Chiller/Boiler plant metering
 - Building level metering
- > Thermal Peaks and Energy Consumed
 - Base and simultaneous loads
 - Unbalanced heating and cooling loads
- Diversity of Buildings
 - Aggregate loads
 - Simultaneous loads
- Scheduling/Occupancy
- Equipment Efficiency
- > Incorporating Master Plan
 - Renovations
 - Upgrades

Thermal Energy Profile Results

Selecting Equipment

Centrifugal Chillers

- Up to 2500 tons
- Up to 155F HW temp
- .30 .50 KW/Ton

Screw Chillers

- Up to 450 tons
- Up to 140F HW temp
- .40 .60 KW/Ton

Scroll Chillers

- Up to 80 tons (modular)
- Up to 135F HW temp
- .50 .70 KW/Ton

Selecting Distribution System

Client	Centralized System (Central Energy Plant)	Decentralized System (w/equipment clusters to serve several bldgs.)	Two Pipe Geo Distribution	Four Pipe Geo Distribution
Ball State University	X			X
Miami University	X			X
Corporate Client		X	X	

Note: Pumping energy and sizing is critical to system efficiency

Selecting Geothermal Heat Exchanger

Vertical:

- Unlimited Capacity
- Multiple Types
- Small Footprint

Horizontal:

- Limited Capacity
- Large Footprint
- One Primary type

Surface Water:

- Unlimited Capacity
- Average Footprint
- Multiple Types

Potential Geothermal HX Locations

After reviewing the existing site plan and utility drawings, the potential locations for GLHX fields are identified.

These spaces can include:

- ➤ Open green space
- ➤ Parking lots
- ➤ Athletic/recreation fields
- ➤ Ponds/Rivers/Lakes

Note: In-situ TC Test Bore is required!

Miami University Case Study

Master Plan Process

Master Plan Timeline

2010	Sustainability goals
2010	Long Range Housing Dining Plan
2011	Stormwater Master Plan created
2011-12	Utility Master Plan(UMP) Study and Plan approved using Simultaneous Heating & Cooling (SHC), Combined Heat & Power (CHP), and Geothermal
2014	Boiler MACT study
2016	Sustainability goals revised
2016	Feasibility Study to eliminate steam
2017	Revised UMP to eliminate steam and convert campus to heating hot water and convert South Chiller Plant to SHC.

Project Timeline

2012-2016	Project 1: Western Campus Geothermal Infrastructure Phase 1 & 2
2013-2015	Project 2: North Chiller Plant and East Quad Infrastructure/Renovations
2018-Present	Project 3: South Quad Hot Water Conversion
2022	Project 4: Central Quad HHW Conversion
2024	Project 5: Expand Western Geothermal to all Western Bldgs
2025	Project 6: North Chiller Plant Conversion to Geothermal
2026	Project 7: Steam Plant Conversion to Heating Hot Water

Miami 2026

Utility Master Plan Development & Goals

- Analysis of Emerging Systems & Technology
 - Simultaneous heating & cooling (SHC)
 - Combined heat & power (CHP)
 - Distributed steam production
 - Geothermal
 - Biomass
 - Wind
 - Solar
- **≻**Goals
 - Reduce carbon by 43% by 2026 using a baseline of 2008
 - Reduce KBTU/GSF to 76 by 2026 from 2008 baseline of 166

UMP Expected Outcomes

Customer Focus

- N+1 redundancy reliability
- Year round cooling and heating availability
- Aesthetically pleasing

Safety

- Migration to heating hot water is safer than steam, both from a property/personnel standpoint.
- Chemical handling reduced.

Productivity

- Labor efficiency improvements
- Overall energy efficiency improved, 600% in heating with geothermal
- Carbon reduction

Cost

- Water usage minimized
- Chemical usage minimize
- Less environmental regulation and compliance
- Flexibility for fuel (sourcing) options

Implementing the Master Plan

Building Conversion Challenges

- Goggin Ice Arena
- Natatorium and Athletics
- > 130 Degree Domestic Water

Western Campus Geothermal Infrastructure Phase 1 & 2

Campus Loop

- > 8,300 LF new HW & CW piping
 - Piping materials:
 HW PP-RCT (direct buried)
 - Carbon steel
 HW and CHW
 (tunnels)
 - CHW HDPE (direct buried)
- 690 vertical geo heat exchangers at 600 feet deep
- > 133 geo pond loops
 - 1.77 acre irrigation ponds

Facilities Connected to New GEP

New Buildings:

- Western Dining Commons
- Stonebridge Hall
- Beechwoods Hall
- Hillcrest Hall
- Central Energy Plant

Converted Buildings

- Hoyt Hall (IT Services)
- Presser Hall (Academic)
- Child Development Center
- Havighurst Hall

Remodeled Buildings

Clawson Hall

Clawson Hall

Hillcrest Hall

Geothermal Energy Plant (GEP)

Mechanical Features:

- > (3) 250-ton screw heat pump chillers
- > (3) 300-ton variable speed screw heat pump chillers
- > (1) 700-ton magnetic bearing chiller
- > (2) 4,000 MBH back-up boilers
- ➤ Plant Capacity
 - Cooling capacity: 2,300 tons
 - Heating capacity: 30,000 MBH

Geothermal Pond Loop

Benefits of Pond Loop:

- > Free cooling in the spring
- Heat rejection sink in the winter to balance the geothermal vertical heat exchanger
- Lower cost than adding more vertical heat exchangers

Performance

- Performance
- Cost

Geothermal Load Profile

FY 2018 Load Profile for Geothermal Plant

Geothermal Plant Monthly COP FY 2018

Central Plant Annual COP Efficiencies

CHW/HHW/STEAM Production Cost Comparison 2018 FY

Chemical/Water/Salt Cost FY18

Commissioning / Forensics / Lessons Learned

Forensics Steps

- Debrief with Client on Current Issues
- Determine Origin of Issues and Relationship to Other Systems
- Review Existing
 System Plans
 Compared to
 Installation
- Monitor and Document Performance
- Calibrate Energy Profiles

Lessons Learned

- >Keep the system clean!
- Know your true heating and cooling loads for good balance
- ➤ Equipment turn down & phasing of construction
- Obtaining hot water deltaT at the buildings
- Campus can operate at lower hot water temperature then predicted

Thank you!

Questions!

