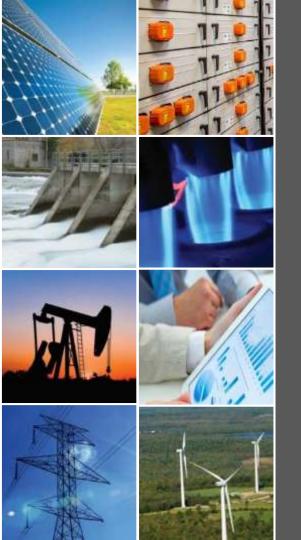
UMassAmherst

MARCH 7, 2019

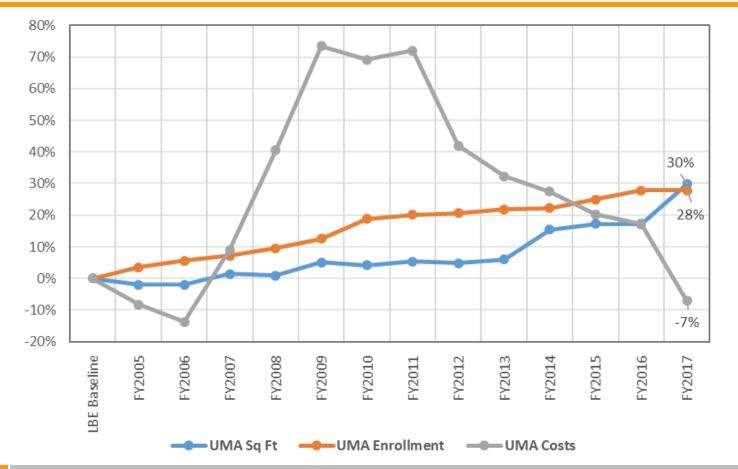


BENEFITS OF AN ENERGY COMMAND CENTER

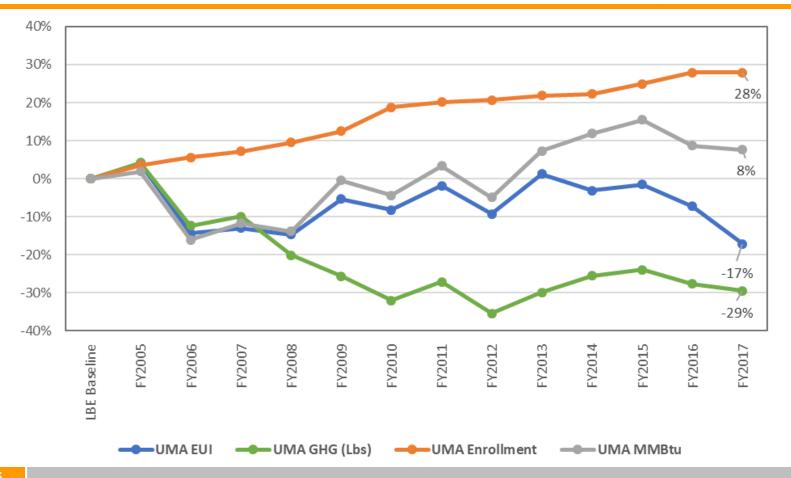
ZAC BLOOM STEVE GRDEN VP, Head of Renewables, Competitive Energy Services Utility Electrical Engineer, UMass Amherst

AGENDA

- 1. UMass Amherst Campus
 - Background & Context
- 2. Anatomy of costs
 - Eversource T-5 Tariff
 - Commodity, ISO NE
- 3. Energy Command Center
 - Project Goals
 - Implementation



CAMPUS BACKGROUND & CONTEXT



OVERVIEW | Despite Growth, Costs are Declining UMASS

OVERVIEW | Despite Growth, Carbon is Shrinking

UMASS AMHERST

Competitive Energy

OVERVIEW | Notable Projects

UMASS AMHERST

- 15 MW CHP Installation
- LNG Installation
- Energy Master Plan
- Onsite Solar
 - Parking Canopies/Rooftops- 5.6 MW
- Battery Storage
- Energy Command Center
- Continuous Commissioning

OVERVIEW | Battery Storage

- 1 MW/4MWh lithium ion battery to be installed by Tesla and operated by UMass Amherst
- Operations aim to reduce peak marginal capacity, help optimize onsite solar, and provide resiliency
- Comprehensive research initiative to be conducted by the UMass Clean Energy Extension
- Tesla to contribute \$80,000 for educational initiatives

PROJECT TEAM

University of Massachusetts Amherst, University of Massachusetts Clean Energy Extension, Tesla Energy, Competitive Energy Services

FUNDING AMOUNT

Requested ACES grant would cover 47% of \$2.42 million total cost

SELECTION PROCESS

Extensive RFP and review process to select Tesla as project partner

OVERVIEW | Battery Storage Objectives & Use Cases UMASS

- Demonstrate value of coincident peak demand management
- 2. Optimize integration of renewable distributed generation
- 3. Educate Massachusetts' next generation of clean energy experts

PEAK DEMAND MANAGEMENT

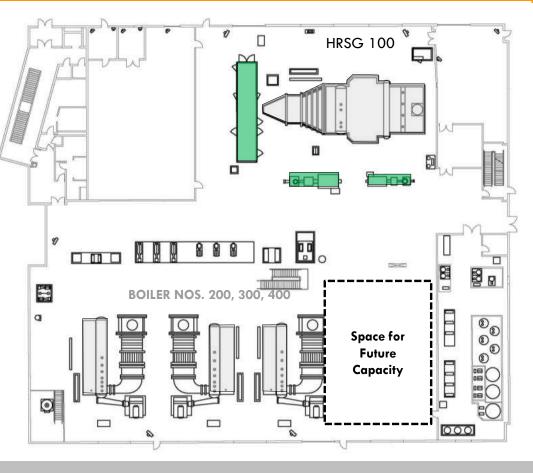
UMass Amherst is in a unique position to demonstrate value of reducing demand to limit additional generation and transmission capacity need

RENEWABLES INTEGRATION

Campus has 15 MW of cogeneration and 5.6 MW of solar PV in service, resource integration poses operational constraints

RESILIENCY

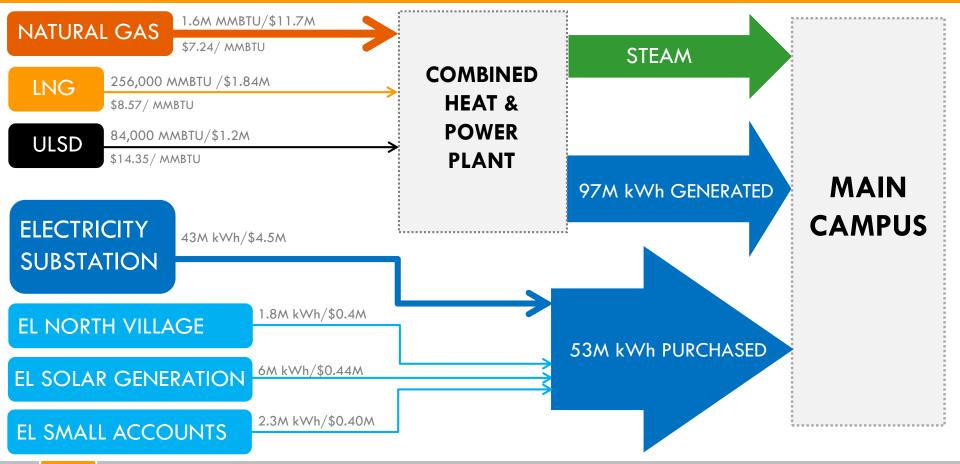
Battery to feed campus distribution system serving the Mullins Center, a regional emergency shelter for Hampshire County



OVERVIEW | Steam Generation System

BOILER CAPACITY

HRSG/ Boiler No.	Boiler Capacity (pph)	Firm Capacity (pph)	Second Fuel
100	100,000	100,000	
200	125,000		Diesel
300	125,000	125,000	Diesel
400	125,000	125,000	Diesel
Total	475,000	350,000	



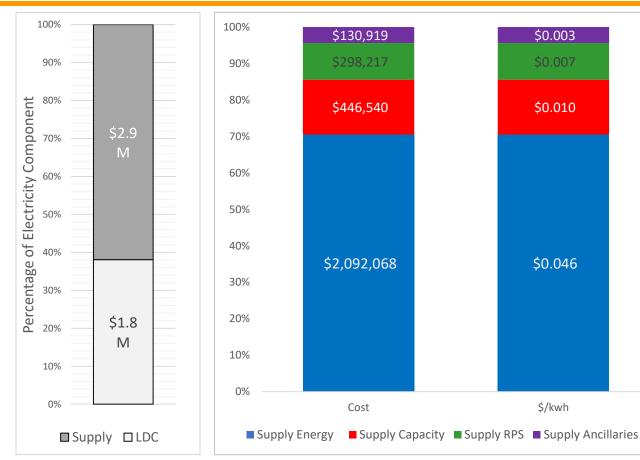
TURBINE SUMMARY

Turbine No.	Turbine Type	Capacity (kW)
G-1	Comb. Turb.	10,000
STG-1	Steam Gen.	2,000
STG-2	Steam Gen.	4,000
Total		16,000

OVERVIEW | Main Campus FY17 Energy Forecast

UMA ENERGY COST ANATOMY Supply & Utility Breakdown

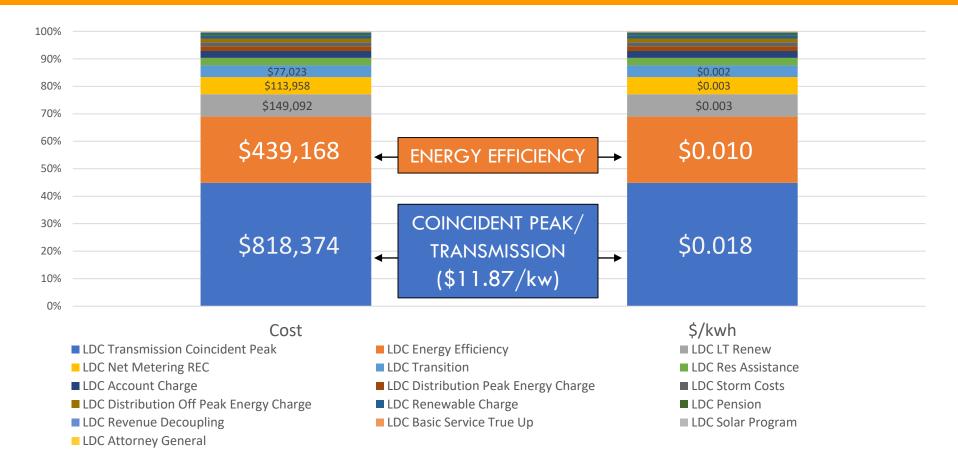
SUPPLY


The SUPPLY is the source of the energy. SUPPLY is the commodity, what is bought, sold and traded. The supplier generates the power and transmits it to the power grid. This also includes ISO-NE costs for the forward capacity market along with the ancillary services.

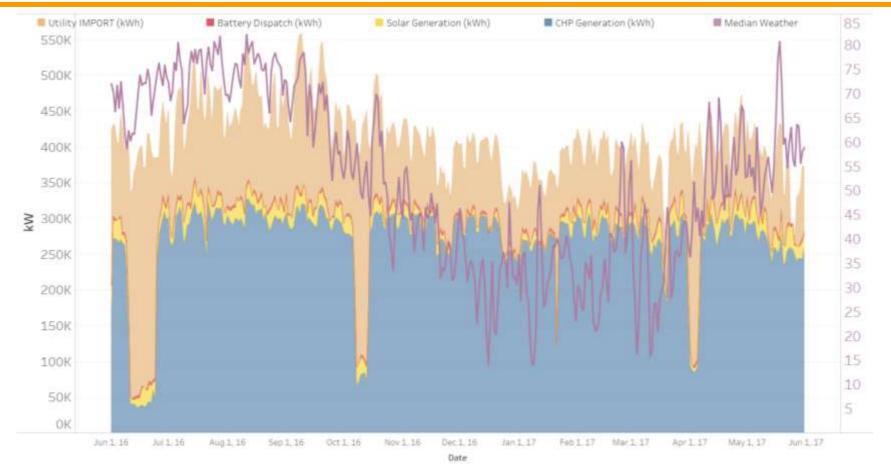
TRANSMISSION & DELIVERY

The Utility, or Local Distribution Company (LDC), takes the power off the grid and transports it to the consumer. These TRANSMISSION & DELIVERY (T&D) charges make up the other half of your bill.

COST ANATOMY What Makes Up Your Supply Price? UMASS

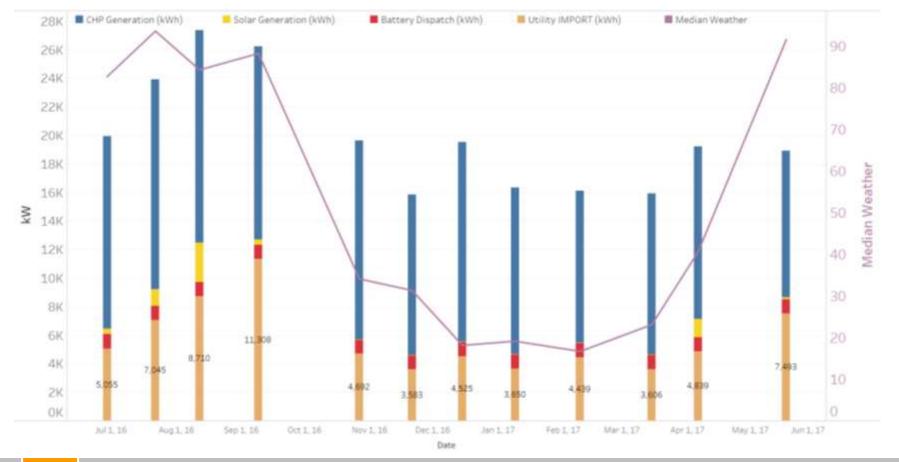


ANCILLARIES: Administrative charges billed to load-serving entities by the NEISO to operate grid safely and reliably


- **RENEWABLE PORTFOLIO STANDARDS (RPS):** Mandates set by individual states for load-serving entities to purchase a certain amount of renewable energy; determined by state regulated compliance percentages and the financial market for renewable energy certificates (RECs).
- **CAPACITY**: Determined by NEISO scaling factors, price auctions and customer's capacity tag. Designed to ensure grid reliability and ensure enough generation available to the region.

ENERGY: The cost of procuring the actual electrons transmitted through the T&D lines.

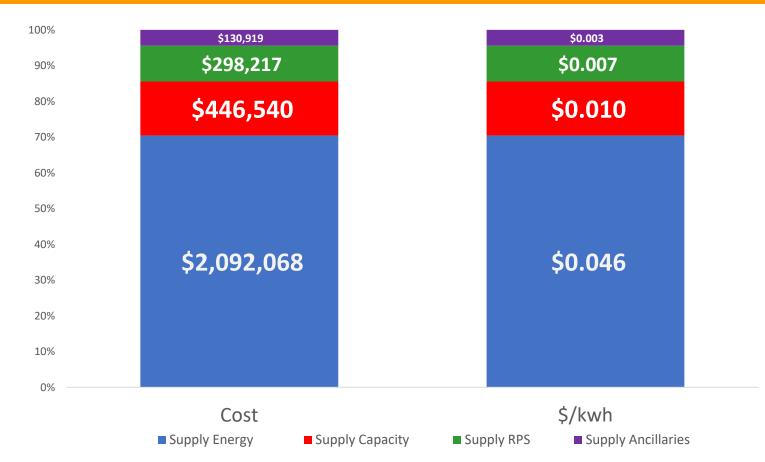
COST ANATOMY | What Makes Up Your LDC Price? UM



COST ANATOMY | UMA FY17 Energy Profile UMASS

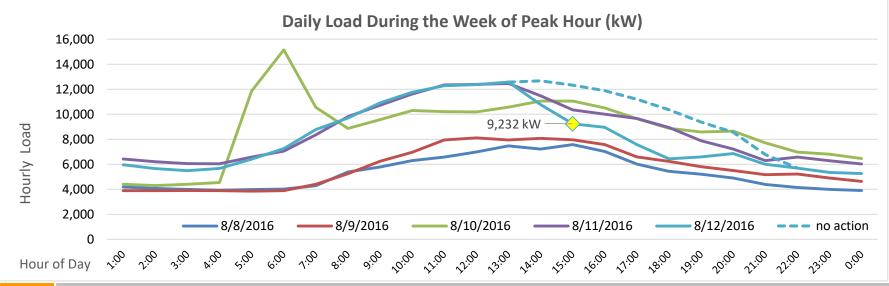
COST ANATOMY | LDC Coincident Peak

COST ANATOMY | LDC Coincident Peak- Cost Mitigation UMASS



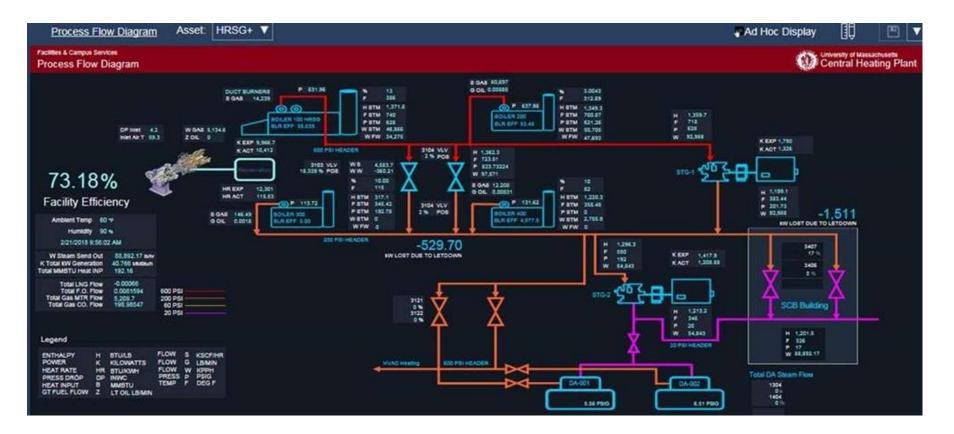
Date	Day of Week	HE	UMA Total Load	UMA WMECO IMPORT (kW)	UMA Solar Generation (kW)	UMA CHP Generation (kW)	UMA Battery Dispatch (kW)
6/29/2016	Wednesday	17	18,542	5 <mark>,</mark> 055	370	13,487	1,000
7/22/2016	Friday	17	21,749	7,045	1,144	14,704	1,000
8/12/2016	Friday	15	23,587	8,710	2,759	14,877	1,000
9/9/2016	Friday	16	24,847	11,308	368	13,539	1,000
10/27/2016	Thursday	18	18,627	4,692	-	13,936	1,000
11/21/2016	Monday	19	14,850	3,583	-	11,267	1,000
12/15/2016	Thursday	18	18,490	4,525	-	13,965	1,000
1/9/2017	Monday	18	15,326	3,650	-	11,676	1,000
2/9/2017	Thursday	19	15,101	4,439	-	10,662	1,000
3/15/2017	Wednesday	19	14,902	<mark>3,</mark> 606	-	11,295	1,000
4/6/2017	Thursday	17	16,939	4,839	1,273	12,099	1,000
5/18/2017	Thursday	18	17,787	7,493	127	10,294	1,000

Unit/Scenario	1	No Cogen	S	tatus Quo	Sola	ar Reduction	<u>CH</u>	P Reduction	Batt	ery Reduction
Total (Kw)		220,746		<mark>68,94</mark> 5		6,041		151,802		12,000
\$/Kw	\$	11.87	\$	11.87	\$	11.87	\$	11.87	\$	12.87
Total Costs (\$)	\$	2,620,260	\$	818,374	\$	71,701	\$	1,801,886	\$	154,440
\$/kwh			\$	0.0182	\$	0.0016			\$	0.0034


COST ANATOMY | Supply Costs

COST ANATOMY | Supply FCM Cost Mitigation UMASS

Year	Applicable Time Range	Settlement Rate (\$/kW/month	Reserve Margin	Effective Rate (\$/kW/month)	UMASS AMHERST Peak (kW)	Estimated Annual Capacity Cost	Monthly Capacity Costs	Capacity Costs (\$/kwh)	Potential Savings per 1 MW Reduction
Peak '15	6/1/2016 - 5/31/2017	\$2.88	56%	\$4.49	8,811	\$475,033	\$39,586	\$0.0105	\$53,914
Peak '16	6/1/2017 - 5/31/2018	\$7.44	49%	\$11.09	9,232	\$1,228,107	\$102,342	\$0.027	\$133,027
Peak '17	6/1/2018 - 5/31/2019	\$9.29	53%	\$14.21	4,621	\$788,178	\$65,682	\$0.017	\$170,564
Peak '18	6/1/2019 - 5/31/2020	\$7.03	51%	\$10.62	6,732	\$857,546	\$71,462	\$0.019	\$127,384
Peak '19	6/1/2020 - 5/31/2021	\$9.55	51%	\$14.42	5,732	\$991,900	\$82,658	\$0.022	\$173,046
Peak '20	6/1/2021- 5/31/2022	\$5.30	51%	\$8.00	5,732	\$550,478	\$45,873	\$0.012	\$96,036
Peak '21	6/1/2022- 5/31/2023	\$4.63	51%	\$6.99	5,732	\$480,890	\$40,074	\$0.011	\$83,896



ENERGY COMMAND CENTER

ENERGY COMMAND CENTER

ECC | Objectives & Use Cases

- Operate plant more effectively and efficiently
- 2. Deliver better visibility to operators
- 3. Add building level data to recalibrate building operations

FUEL ARBITRAGE

With multiple fuels onsite, and live market data, the Energy Command Center will make arbitrage opportunities apparent.

OPERATIONAL AWARENESS

Intuitive dashboards and consolidated data allows operators to have more insight into how their plant is operating.

BUILDING DIAGNOSTICS

Providing whole building level data and internal building sensor data will provide actionable data to identify issues in real time.

ECC | Market Data And Actions

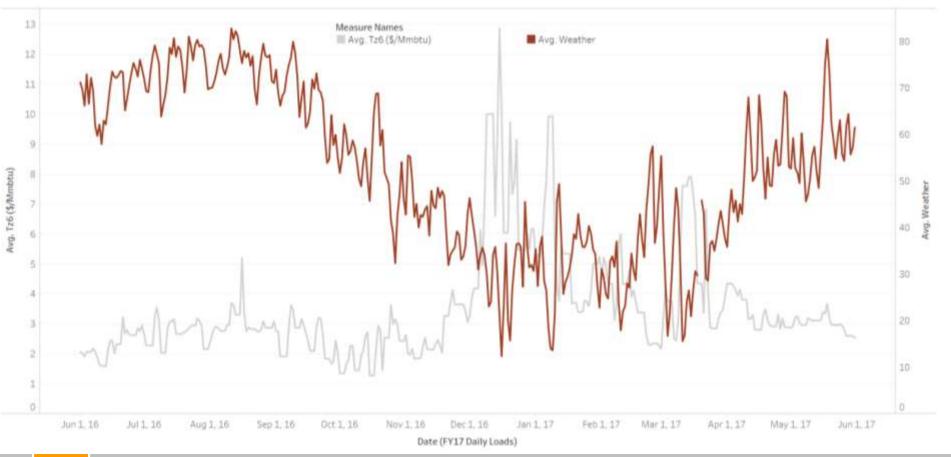
TRACKED MARKET DATA

- Electricity (LMP Day Ahead + Real Time)
- 2. Natural Gas Day Ahead
- 3. Static Contracted Prices and Volumes

CHARGE OR DISCHARGE BATTERY

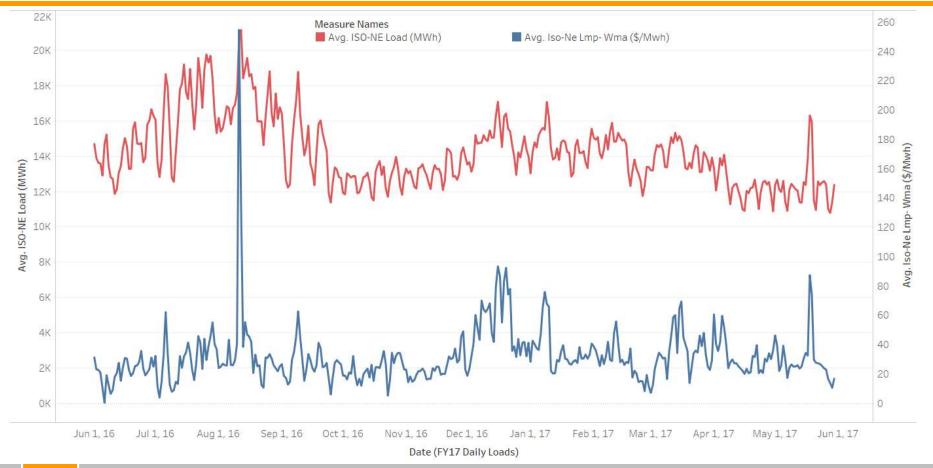
Monitoring the cost of electricity and campus demand, operators can choose the best time to dispatch this resource.

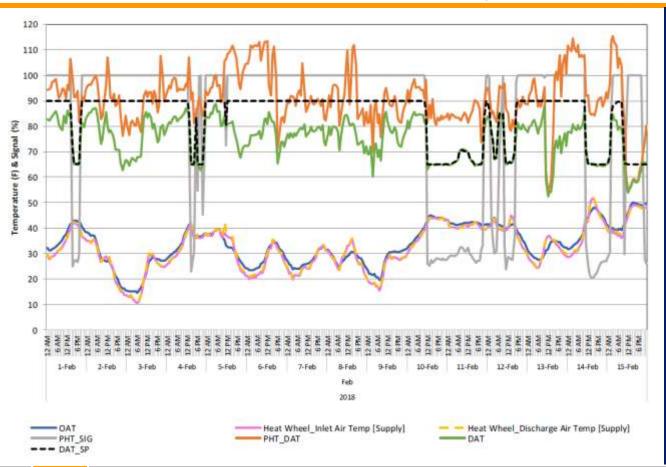
MAKE OR BUY ELECTRICITY


During market spikes, it may be more effective to back down generation and purchase from the grid.

FUEL ARBITRAGE

With Natural Gas, LNG, and Oil at the plants disposal, choosing the right fuel to use is apparent.


ECC | Natural Gas Daily & Weather



ECC | ISO-NE Load & LMP Pricing

ECC | Morrill- Heat Recovery Wheel (HRW) UMASS

- ERV2 is 100% Outside air, constant volume unit and runs 24/7 and contains a HRW
- Data shows HRW in not turning when the heat when command and status points are ON.
- Missed opportunities to preheat incoming air
- Estimated Annual Savings:
 - **\$16,803**
 - 933 Mlbs

THANK YOU

COMPETITIVE-ENERGY.COM

866.408.4591