EVAPCO FOR LIFE

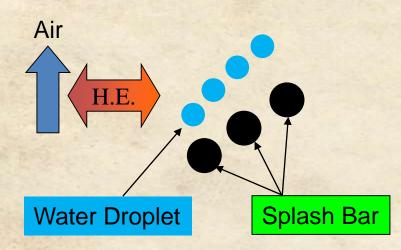
Important Criteria When Considering Cooling Towers for Your DCP

Georges Hoeterickx Director Business Development

Jelle Wagelmans Sales Manager Middle East

Important Criteria When Considering Cooling Towers For Your DCP

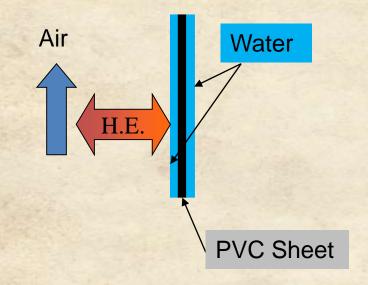
- Film Fill Types Materials Maintenance
- Cooling Tower Layout
- Thermal Performance Certification (CTI)


Film Fill types – Materials – Maintenance

- Types of Fill & Selection Criteria
- Thermal Performance Ratings
- Material and Mechanical Properties
- Fill Life Time and Maintaining Tower Efficiency

Fill Selection Criteria

Splash Type



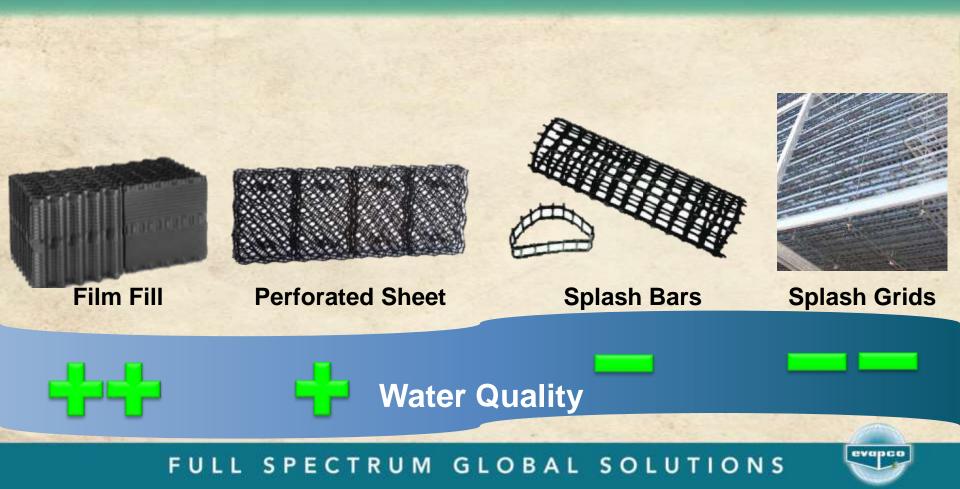
- The water droplets generated by splashing
- Heat exchange between water droplets surface and air

Fill Selection Criteria

Film Type

 Heat exchange between water film surface on PVC sheet and the air

Fill Film Selection


- Fill is a media to create more water surface exposed to the air
- Fill increases the time air-water contact by retarding the progress of water

Increased heat transfer

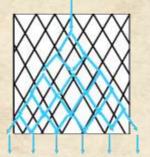
Fill Selection Criteria

Fill Selection Criteria

The selection of the FILL TYPE depends on the circulating water characteristics:

- Type of water: sea, TSE, potable water
- Type of industry: power, chemical, paper, steel, DCP ...
- Water availability (concentration factor)
- Type of water treatment

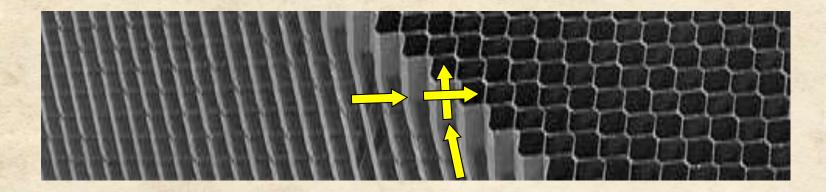
Water Quality


Fill Fouling Directly Related to Total Suspended Solids (TSS) & Biological Activity

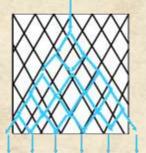
- Origin Suspended Solids in the circulating water:
 - TSS of make up water
 - Dust and airborne particles washed by the cooling tower
 - Dispersants used to control the scaling
- Biological activity controlled with biocides injection

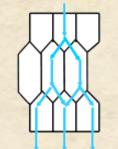
TSS maximum concentration for each fill is only valid if the Biological activity is controlled !

Film Fill Types



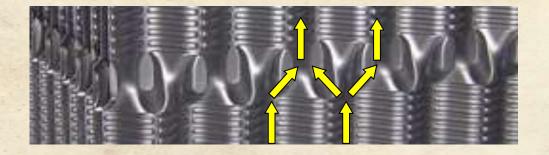
Cross-Flutes High Efficiency


Cross Corrugated Film Fill Type



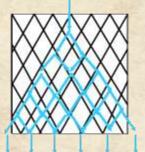
- Cross corrugated flutes require (very) good water quality
- Highest specific heat transfer
- Slow water / long air travel → risk for fouling
- Crossed sheet design = high structural rigidity

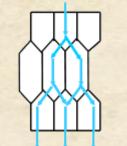
Film Fill Types

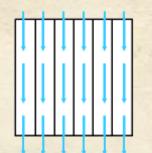


Cross-Flutes High Efficiency Offset-Flutes Efficient Low-Fouling

Vertically Offset Flute Film Fill Type

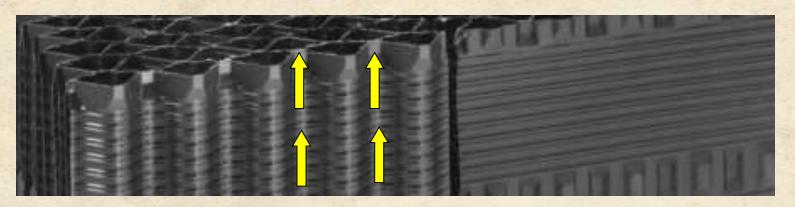



- Offset flutes require good water but more forgiving than cross corrugated
- Highly efficient sheet texture and transitions
- Moderately fast water vs. air travel = low fouling risk
- Lower efficiency compensated by low pressure drop


FULL SPECTRUM GLOBAL SOLUTIONS

evapco

Film Fill Types



Cross-Flutes High Efficiency Offset-Flutes Efficient Low-Fouling Vertical-Flutes Anti-Fouling

Vertical Flute Film Fill Type

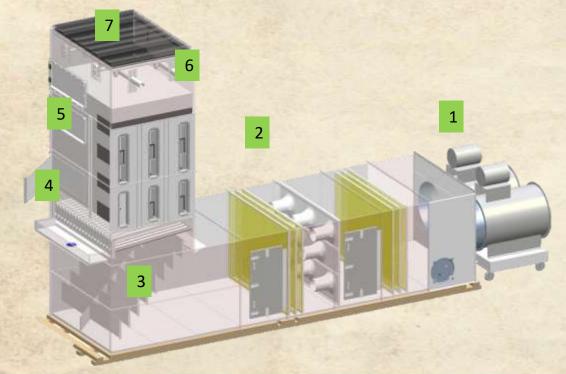
- Vertical flutes handle severe water quality well with proper bacterial control
- Efficient sheet texture = very low fouling risk
- Fast water / air travel = very low fouling risk
- Very low pressure drop = better than splash

Water Quality Comparison

Biological / Bacteria and Total Suspended Solids

Fill Type	High Performance film fill 12 mm or 19mm Spacing Cross Fluted (EVAPAK®)	Low Fouling film fill 25 mm Spacing Vertical Fluted (TechClean™)	Anti-fouling film fill 19mm Vertical Flow (VertiClean™)	Splash Fill Bars / Grids (Opti-Bar™ Arch-Bar™ Opti-Grid™)
TTS (ppm)	<25	<50	<100	>100
Bacteria Count (ppm)	<10,000	<100,000	<1,000,000	>1,000,000
Bio & Scale Control	Required	Required	Required	Lower to none

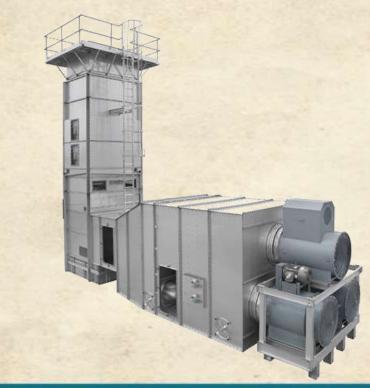
Note: Fill spacing function of TDS



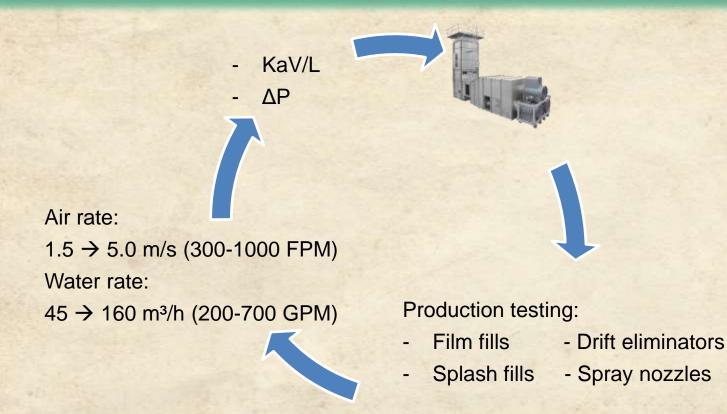
Film Fill types – Materials – Maintenance

- Types of Fill & Selection Criteria
- Thermal Performance Ratings
- Material and Mechanical Properties
- Fill Life Time and Maintaining Tower Efficiency

Counterflow Film Fill and Spray Test Cell

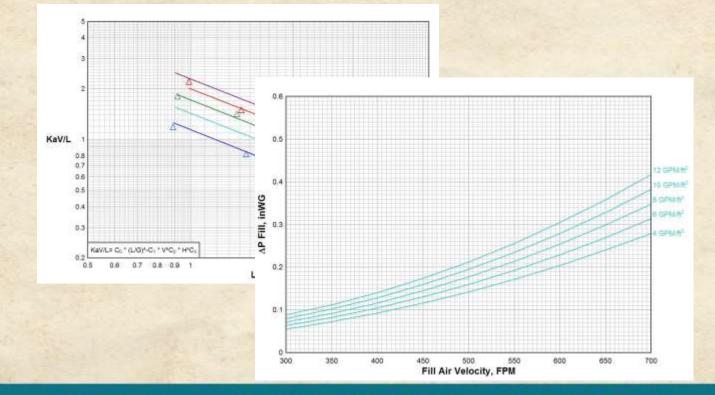


- 1. Forced draft fans
- 2. Airflow nozzle wall to measure volumetric airflow
- 3. Turning vanes
- 4. Cold water collecting troughs and mixing box
- 5. Counterflow fill test section
- 6. Hot water distribution pipes and spray nozzles

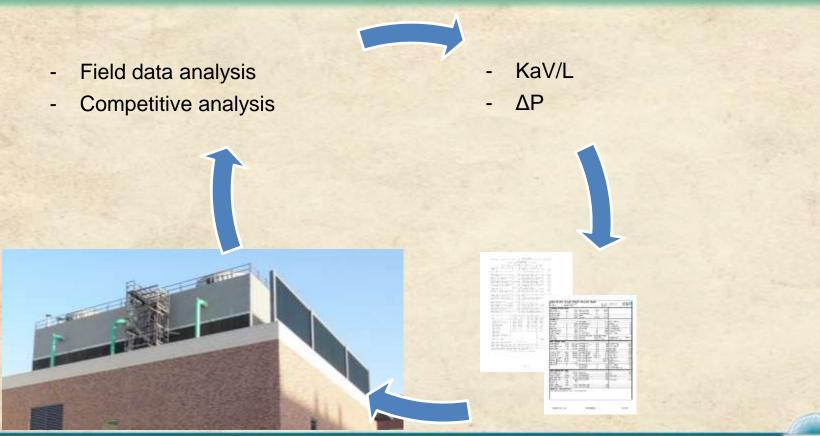

evapco

7. Drift eliminators

Counterflow Film Fill and Spray Test Cell



Fill Data


			Ruled Using Exap Bulls (Version: Debug 07.01.201			
Custoiner Neine	Challes Sharlash		Dete Rated 71(001) Date Portest 71(01)			
Loonor Provider			Ounted Name Andrew T Call			
	IT (JC 3868 20 TCAATC)		Contact Phone	410-758-2800		
Selection Type:	112 3353		Сопроления	20432		
Droft Type	induced Draft Caudemine		Louver Mixtel	Fill Model TechColery (152) (11/13)		
Figer Type						
Operation Mode	Fullemail		lipray Acesta Madal	Evep.Md 8		
Wei / Dry Wode	Wet Only		Delli Elananator Model	DisAr90		
Solving Par MotorP	Oven: HWT, OVT, V	VB1, When	Intel Califina	T-NI		
Genetic Conditione			Thermool Results			
Toxet Elecation	42 11	1519	Predicted HW7	100.0419	42.50 %	
Cell Querity	3		Predicted Range:	14.04 17	7.80 YG	
Cell Length	38.00.10	11.582 M	Predicted CiVT	96.00 F	35.00 °C	
CHI WURs	38 (X) W	11.582 m	Predicted Approach	5.40 °E	3.00.°C	
Guardity Fare Per Cell			Predicted Differing WBT	39.60 T	32,00 °C	
Been yest criver	0.60 %	0,752.01				
Air inat Arrangement & 2 Air inats (16)		Water Side Results				
			input Water Flow Flate	35.430 GPM	1,546.97 (63)	
Georentic Heighte			Predicted Vieter Pice	36,450 GPM	0.285.20 m3r	
Air miel Height (TOC)		4.207.01	Predicted Tower Capooly	103.0 %		
Fill Ar Trivel	6.00 ft	1.839.41	Weeky TCH	- PEM		
Header Center Line (D		0.005 (*)	Evaporation	1.30.%		
Purphiel (ES)	28.921	8.077.01	Eveporation Hula	458 OPM	110.75 m3#h	
Plenare Height	6.28 代	1.596 #1				
Fan Deck Height	30.05 1	15.546 m	Aidbow			
Part Stack Height	10.00 11	3,040.01	Autow Per Park	001,415 CP18	425.42 m3/a	
Total trivight	40 00 ft	52 (92.9)				
Facilitarian			All Velocities	\$21 Mmin	4.170 mm	
	1000		Air Inier (EM - Gross)			
Fan Manufachurer	Other		Pill (Met)	(FAIS Elimin)	3.295 m/s	
Film Type Fair Model	(Plan Type)		CHIT Elementor	058 R/mm1 1597 R/mm	2.243/6/6	
	and day as	7.925-m	Feo Steck (Net)	NOW WHAT	#11316/6	
Fay Diarsoter	26.00 #	1.16.00.00				
Per Dieles Per Bade Pain			System Presautos			
			Pan Statil Pressure VP Pat	10321997	257.16Pe	
Fer Static Efficiency	A60.0 %			0.171 yeavy	42.57 Pg	
Fest Total Officiency	100.0 %		Pan Total Pressure	1.003 HHVg	299.75 Fit	
Drive Information			Fower Consumption			
Hotor Speed	1.775 RPM		Preditted Fatt P. (A03)	222.65 杯	105-03-009	
Drive Model	1712					
Drive Rotio (Non-Actu	ni 123					
Film Speed (Tap)	11.884 Mmm	80.37 998				
Fart Speed (SPM)	145 49 RPM					

TWen ngs] Fill Outside Test Range: Fill AT = 1.829 m

Divisition Asia Provide 249 bird www.eesh WALATTER Phone: 311 Abs 3075 7276

Film Fill types – Materials – Maintenance

- Types of Fill & Selection Criteria
- Thermal Performance Ratings
- Material and Mechanical Properties
- Fill Life Time and Maintaining Tower Efficiency

Cooling Tower Heat Exchange Surface

CTI STD – 136 : Thermoplastic Materials Used for Film Fill, Splash Fill, Louvers and Drift Eliminators

- This CTI specification covers the most common fills, splash fills, louvers, drift eliminators, nozzles, and other small components for use in standard properties, burning properties, and recommended testing procedures employed to determine the defined values, whether processed from virgin or reground material.
- Revised June 2010

ASTM E 84

ASTM E 84 tests for flame spread rating (FSR).

- Red oak flooring has FSR of 100
- Fiber cement board has a FSR of 0

Historical number Flame Spread Rating PVC Fills was 25. Today : material with Flame Spread Rating of 5

Film Fill Material Thickness & UV Protection

- Material thickness & UV protection determines life time of the fill
- Specify the fill material thickness "before" and "after forming" !
 The forming process thins the material and
 15 mills PVC fill before forming (can) become 10 mills <u>after forming</u> !

Remark

How we know that specified numbers and qualifications are valid for the materials supplied ?

Ask specific test reports

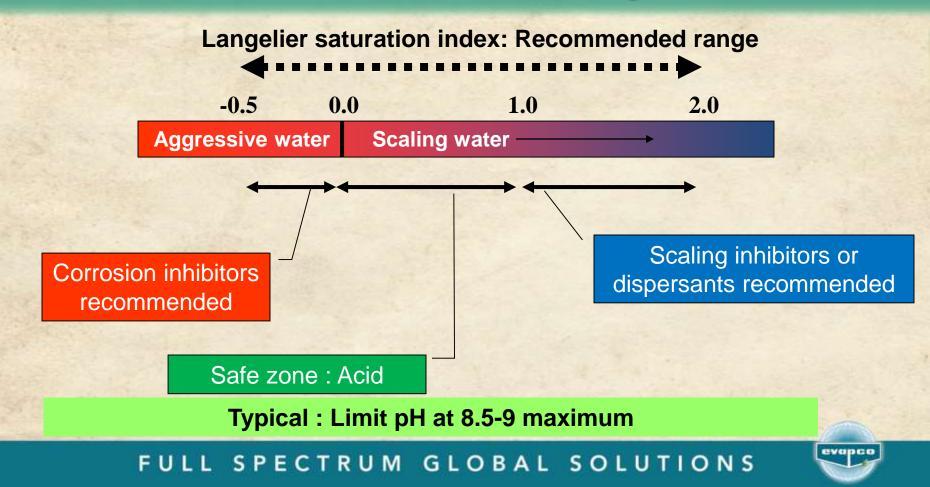
Materials

PVC fill

- High strength (CTI STD 136)
- Extremely durable
- Self extinguishing
- Surface wets out well
- Can be glued in bundles

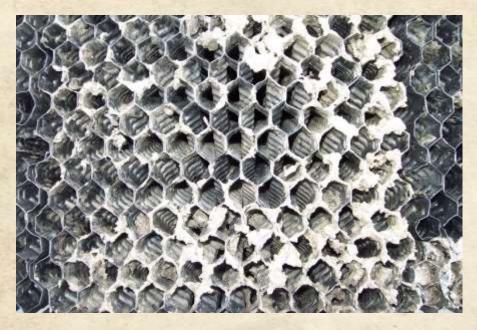
PP fill

- Durable but high creep rate, need
 50 % thicker than PVC
- Very Flammable
- Poor wetting characteristics
- Cannot solvent bond



Film Fill types – Materials – Maintenance

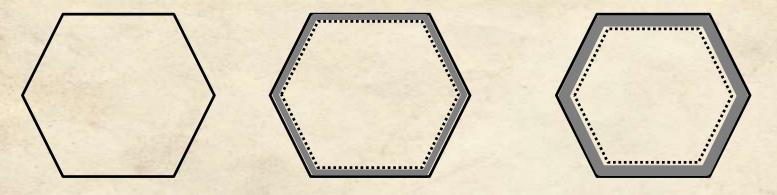
- Types of Fill & Selection Criteria
- Thermal Performance Ratings
- Material and Mechanical Properties
- Fill Life Time and Maintaining Tower Efficiency



Water Treatment: Scaling

Fill Life Time and Maintaining Tower Efficiency

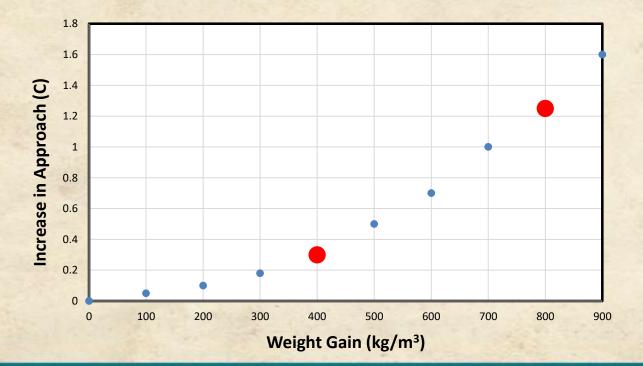
Scale Build-Up on PVC Fill Sheets



- Maintenance : Assure fill remains in good condition
- Water treatment important to control scale build-up

Fill Life Time and Maintaining Tower Efficiency

Effect of Fouling on Fill & Cooling Tower Performance



Clean Fill (48 kg/m³) 1.6 mm Fouling (448 kg/m³) 3,2 mm Fouling (848 kg/m³)

Fill Life Time and Maintaining Tower Efficiency

Estimate of Performance Loss vs. Fouling

Important Criteria When Considering Cooling Towers For Your DCP

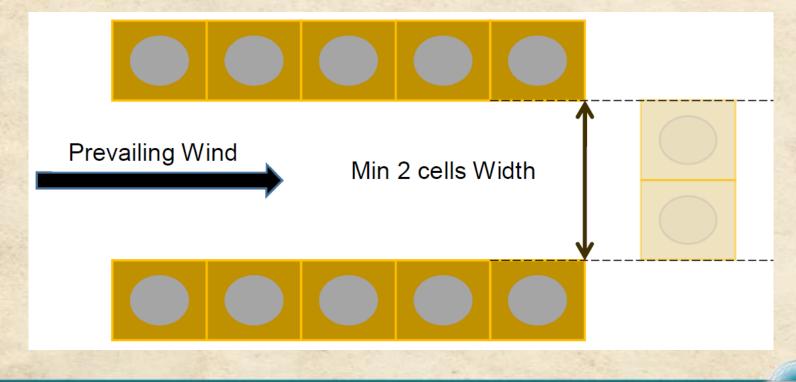
- Film Fill Types Materials Maintenance
- Cooling Tower Layout
- Thermal Performance Certification (CTI)

Cooling Tower Layout

- Arrangement
- Type of Enclosures
- Influence on Thermal Performance
- Clearance
- Type of Influence

Single Row

Back to Back (Double Row)



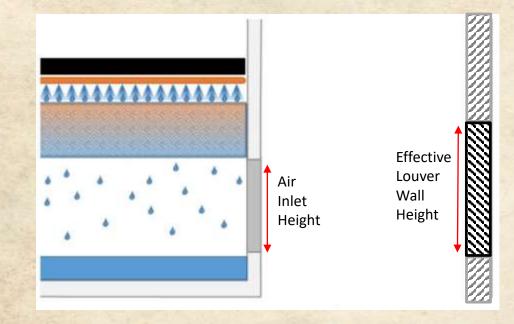
Two Rows – Not Ideal for Recirculation!

Two Rows – Not Ideal for Recirculation!

Stairway -> Space Required!

Free Field Installation

Solid Walls Enclosures


Louvered Walls Enclosures

- % Free open area louvers
- Pressure drop through louvers
- Orientation

Louvered Walls

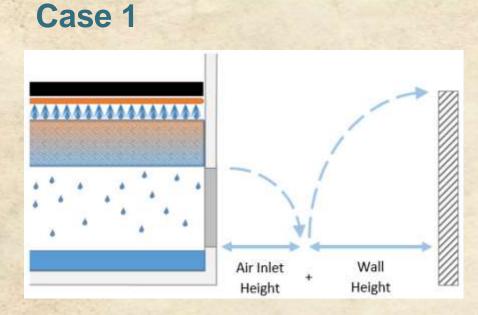
Effective louver wall height

1.2 x air inlet height

Louvered Walls

- Air flow takes the path of least resistance.

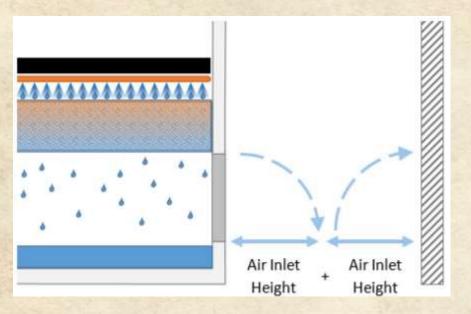
Wall Type	Louver	Solid	
Net Vertical Air Velocity ≤	600 FPM	400 FPM	
Net Louver Air Velocity ≤	500 FPM	N/A	



Influence on Thermal Performance

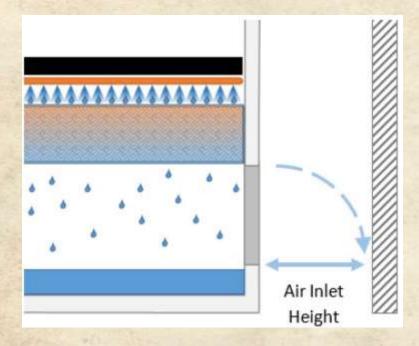
- Net free open area
- Air flow obstruction
 - Enclosure structural framing
 - Piping
 - Walkways
- Clearance

Clearance



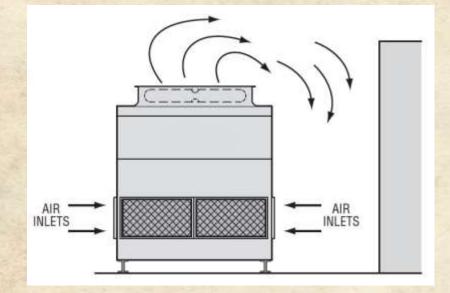
- Minimal impact
- No correction required

Clearance



- 2 x air inlet height < clearance < air inlet height + wall height
- Add 5 Pa (0.02 in WG)
- Risk for recirculation!

Clearance



- 1 x air inlet height < clearance < 2 x air inlet height
- Add 10 Pa (0.04 in WG)
- High risk for recirculation!

Type of Influence

- Increased pressure drop
- Mal-distribution of air
 - Increased static pressure
 - Hot water bypass
- Recirculation
 - Height of enclosure
 - Solid or louvered wall
 - Clearance

IF YOU OBSTRUCT THE AIR TO THE COOLING TOWER

THE COOLING TOWER DESIGN / THERMAL PERFORMANCE WILL BE AFFECTED

Important Criteria When Considering Cooling Towers For Your DCP

- Film Fill Types Materials Maintenance
- Cooling Tower Layout
- Thermal Performance Certification (CTI)

CTI Standards

• STD-105

Code/Procedure for CT Thermal Performance Testing on Site

• STD-201

Certification Program: Thermal Performance of Packaged CT's

• STD-202

Voluntary Program for Custom/Field Erected Cooling Towers

- Test Conditions: max. variations
 - Wet-bulb: +/- 8.5°C (15°F)
 - Range: +/- 20%
 - Water flow: +/- 10%
- Instrumentation
- Measurements
- Evaluation of results

Certification Scope:

- Wet-bulb: 12.8°C to 32.2°C (55°F to 90°F)
- Range: ≥ 2.2°C (4°F)
- Approach: $\ge 2.8^{\circ}C$ (5°F)
- Inlet T: ≤ 51.7°C (125°F)
- Standard models
- Accessories

- Participants allow CTI to publish thermal performance test results
- Field test must be executed by CTI licensed test agency
- Participants:
 - Composite Cooling Solutions, L.P. (CCS)
 - Evaptech Inc. (Evapco Inc.)
 - SPX Cooling Technologies, Inc (Marley)

A wholly owned solutions of Peopeo, Inc.

Participating Manufacturer	Composite Cooling Solutions, L.P.	EvapTech, Inc.	SPX Cooling Technologies	All Multi-Agency Acceptance Tests for the previous year*	
Testing during the Period:	8/21/2013 to 08/16/2016	10/26/2013 to 10/18/2016	05/20/2015 to 08/30/2016	2015	
Percentage of tests at or above 100% Capability	N.A.	100	60	62	
Percentage of tests at or above 95% Capability	N.A.	100	100	82	
Average Capability of tests below 95% Capability	NA.	None	None	89.4	
Average Water Flow Rate	N.A.	74,059	108,282	58,583	
N.A. = At the time of this publication the minimum number of CTI licensed tests required to publish results by STD-202 have not been performed.					

Benefits for Owners/Operators

- Performance tests demonstrate the actual thermal performance
- Lower outlet water temperature → chiller efficiency increases
- More efficient DCP → lower energy consumption

Innovations for LIFE

• Taking

Quality & Service

• to a Higher Level

