
James Bohn
FVB Energy Inc.

International District Energy Association
Campus Conference
February 13, 2020
Agenda

• Why temperature matters
• District hot water temperatures coming down
• Design trade-offs
• Building conversion costs
• Conclusions
Why temperature matters

- Broader array of energy sources with lower temperature hot water
- Better heat pump COP at lower temperatures
- Reduced heat losses
Why temperature matters

- COP is strongly affected by temperature “lift”.
- Generally, the maximum practical output temperature of a heat pump is about 170°F.
- Usually heat pump systems are designed for lower temperatures if possible.

- Graph shows representative values for the COP of a heat pump driven with a heat source of 50°F for a range of heat output temperatures.
Hot water temperatures coming down

- Strong trend toward reducing hot water temperature
- “Generations” of district heating

![Evolution of District Heating](chart.png)
Hot water temperatures coming down

- Swedish DH system temps have been dropping
- Most systems are now in 3rd or 4th generation
- We are now moving to a next generation – 120°F or below

Global Presence
Local Solutions
It’s not just plants and pipes!

- Building conversion costs are often given insufficient scrutiny when a hot water temperature scheme is considered.
Design trade-offs

- Life-cycle analysis of cost trade-offs is critical!!
- Assess the impact of alternative Hot Water District Heating (HWDH) supply and return temperatures on:
 - Conversion of building systems
 - Dispatch of heat sources
 - Distribution piping materials
- Phased approach to hot water temperatures may facilitate capital cost reductions
New buildings

- New buildings can and should be designed for temperatures of 120°F or lower.
- Special efforts are required to prevent Legionella problems if a supply temperature lower than 140°F is contemplated.
Retrofit of buildings

- Retrofit of existing buildings is more complex and more expensive.
- Typical North American building HVAC systems are designed for 180-200 °F.
- If lower temperatures are delivered to terminal equipment than the units were designed for, heat output capacity is reduced or “derated”.
- It is sometimes necessary to reduce heating requirements through envelope improvements (insulation of roofs and/or walls, window replacements, etc.).
Building systems conversion

Bummer

All steam equipment; lots of process load

Nirvana

Existing HXs convert steam to low temp HW; no process load

Typical Reality

Low cost

High cost

Global Presence
Local Solutions
Building systems

• What are the characteristics of the building systems?
 – Steam to hot water (HW) heat exchangers
 – Steam or HW perimeter heat
 – Steam or HW reheat coils
 – Steam pre-heat coils
 – Process loads

• Useful to classify HVAC systems into
 – Steam
 – Hot water
 – Hybrid
Conversion costs

• Following data based on schematic designs for a range of campus and government buildings
• Significant scatter in data due to wide variation in building-specific circumstances
• Generalizations:
 – Smaller buildings are most costly per kW thermal load
 – Steam systems most costly
 – Hot water systems least costly
 – Hybrid systems in the middle
Example conversion costs by HVAC type vs load

- Steam
- Hybrid
- Hot Water

Global Presence
Local Solutions
Conversion costs

• **Temperatures matter!**
 • If client goal is cost-effectiveness and heat production is fuel-based, recommend minimizing terminal equipment replacement
 • With existing steam systems, must often replace terminal equipment, so these systems can run on lower temperatures
 • Existing hot water systems can be converted more cost-effectively if higher temperatures are acceptable
 • Conversion costs are very building-specific
Example conversion costs by temperature vs load

- 140F supply
- 150-160F supply
- 170-180F supply
Conclusions

• How low can you go?
 – Technically, very low, considering space heating air temperature set points, with consideration of DHW issues

• Easier to optimize with new buildings

• Economics are driven by high heat transfer area surface area

• Retrofits present additional challenges and higher costs

• Optimization analysis must consider heat production, distribution system and building system design or retrofit
Conclusions

• Must also consider evolution or revolution

• Phasing district heating temperature reductions can take advantage of building renewal cycles

• Ultimately, most appropriate design depends on client goals

• In municipal settings, policy is critical
Thanks for your attention!

James Bohn
Phone: 612-315-6451
Email: jbohn@fvbenergy.com

Global Presence
Local Solutions

45 Years of Experience in Sustainable District Energy Systems