Using the Microgrid Model to Help Meet the Needs of a Medical School Campus

International District Energy Association June 30, 2015

Matthew Stelmach, PE UMass Medical School

Chris Roland Ryan Bolduc, PE Eugene Lambert, PE Wunderlich-Malec

AGENDA

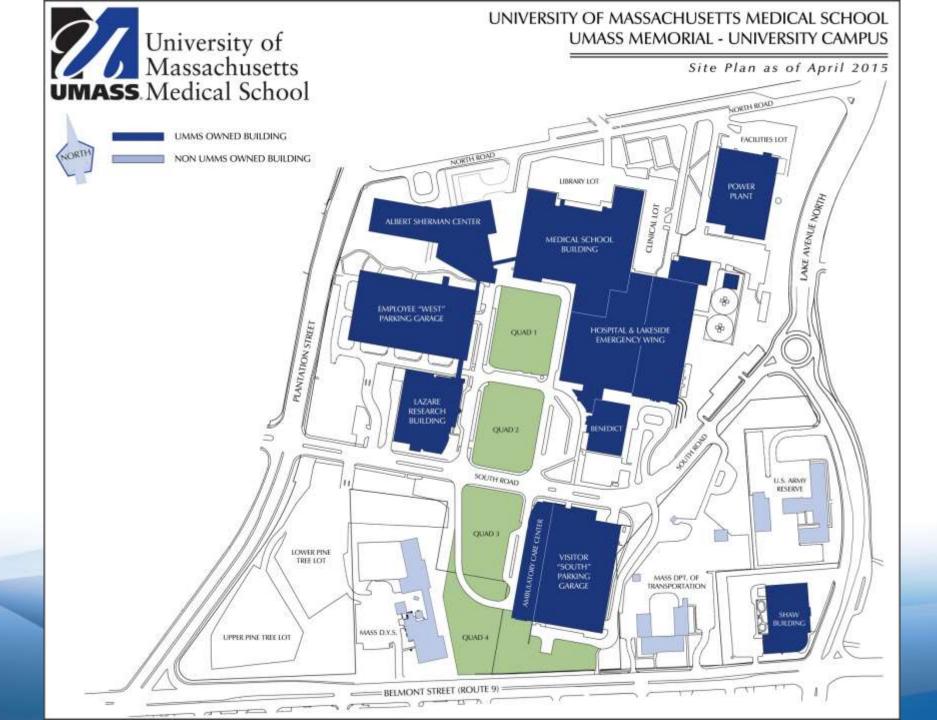
- UMMS History/Overview
- What are the needs of the campus?
- Why was the power plant expanded?
- How were the expansion needs met?
- How will future expansion of the campus incorporate the Microgrid model?

UMMS HISTORY/OVERVIEW

Worcester Campus

- 60 acres
- 3.5MSF of facilities

Medical School


- \$1B Enterprise 3,000 Full and Part-Time Faculty
- 1,000 students (Medical Education, Graduate School of Biomedical Sciences and Grad School or Nursing)
- Over \$220M in annual research funding

UMass Memorial Healthcare System

- Full service healthcare system in central Mass
- Lake Ave Campus has 400 Registered Beds, Lifeflight, 20 surgery suites, Emergency Department, Radiology, Oncology, Cardio Vascular, Ortho, etc.

UMMS HISTORY/OVERVIEW

Original Plant Constructed in 1970

- Served approximately 2MSF of hospital and medical school
- Campus has an underground steam, chilled water and electricity distribution system.
- First CHP Expansion in 2000
 - Increased NIH Funding and Healthcare Delivery needs MSF
 - New Equipment:
 - 5MW Topping Cycle Turbine (1100psi to 250psi)
 - Two 1100psi, 115,000pph boilers
 - 5,000 Ton Chiller, powered by 50psi steam
 - Cooling Towers and Accessories

CAMPUS NEEDS

Reliable Sources of Energy

- Electrical
- Steam
- Chilled Water

Critical Loads

- Two Independent Sources of Electrical Power
 - Onsite Generation
 - Utility

Reasons for the 2010 Power Plant Expansion

Campus Expansion, 1MSF

- Albert Sherman Center
- Hospital Bed Tower in planning
- Ambulatory Care Facilities
- Energy and Economic Efficiencies
- Reliability and Redundancy N+1 minimum
 - Equipment
 - Island Mode
- Fuel Diversity
- 96 Hour Utility Operations on Site
- Sustainability Green House Gas Impact

How Campus Expansion Needs Were Met

- Nominal 7.5 MW Combustion Turbine
 - Natural Gas, No. 2 Fuel Oil Back-Up
- > Nominal 60,000 lb/hr Heat Recovery Boiler
 - Duct-Fired With Natural Gas
 - SCR Type Emissions Control System
- 4,000-ton Electric Driven Chiller
- Supporting Equipment & Systems
- Operating Efficiency >66.3%

Microgrid Model - IDEA

".....a microgrid is not just back-up generation but should be a robust, 24/7/365 asset that provides primary energy services to a market. A microgrid can provide back-up generation, but it offers additional, more intricate services as well." Quote extracted from <u>Think Microgrid, A Discussion Guide for Policymakers, Regulators and End Users</u> sponsored by IDEA and others *

Rob Thornton, President and CEO of IDEA, says that Microgrids are ".. More than diesel generators with an extension cord." *

*. Think Microgrid: a Discussion Guide for Policymakers, Regulators and End Users", Energy Efficiency Markets, LLC, © 2014, pg. 5

Microgrid Model - IEEE

"Microgrids can disconnect from the traditional grid, operate autonomously, help mitigate grid disturbances, serve as a grid resource for faster system response and recovery, and hence strengthen grid resilience." **

** IEEE POWER & ENERGY Magazine, May/June 2015, MICROGRIDS, pg. 37

Microgrid Model - Application

- Waldron Engineering and Construction, Inc. Designed the 2010 expansion.
- > The design included an integrated load shed, protection and Islanding system entitled *Plant Master Electrical Controller (PMEC)*.
 - The Load Shed system selected was ETAP Intelligent Load Shed (ILS) system by Operation Technology, Inc.

Microgrid Model - Application

Enhanced existing load shed system

- Static to Dynamic
- Eliminates over shedding
- Reduces minimum spinning reserve requirement
- Easily expandable
- Extremely fast

Microgrid Model applies to campus critical loads

ILS Trigger Monitor - Server

Mode Real-Time		Data Source R			Real-Time	Data Capture T	ata Capture Time 9/26/2012 12:24:24 PM		112 12:24:24 PM		
Triggers (20/20)											
# A	Status	Trigger ID	Subsys	Event		GRP∆ L	Load	adı, A	Status	Shed/Oper MW	
7	Disabled	Tie G2 Trip	1			2	2A / MCC7	1	Closed	0.064 🔺	
8	Disabled	Tie_G3_Trip	2			2	2A / MCC7	1	Closed	0.065	
9	Disabled	Tie_G4_Trip	3			2	CONT40 / FLUE GAS RECIRC FA	N O	Open	0	
10	Disabled	G1_G2_Trip	1			2	CONT40 / FLUE GAS RECIRC FA		Open	0	
11	Disabled	G1_G3_Trip	1			2	L4A / SHERMAN BLDG OPTIONA		Open	0	
12	Disabled	G1_G4_Trip	1			2	L4A / SHERMAN BLDG OPTIONA		Open	0	
13	Disabled	G2_G3_Trip	1			3	CONT84 / FD FAN #1	0	Open	0	
14	Disabled	G2_G4_Trip	1			4	CP3-E5 / CT-F5	1	Closed	0 / 0.238	
15	Disabled	G3_G4_Trip	2			4	CP3-E5 / CT-F5	1	Closed	0 / 0.239	
16	Disabled	UnderFreq1E	1			4	MCC2-6A / CT FAN #3	1	Closed	0.14	
17	Disabled	UpdorFrog2E	1	1		4	MCC2-6A / CT FAN #3	1	Closed	0.14	
Description Tie line and G2 trip						4	MCC3-2A / CT FAN #1	0	Open	0	
All				ㅋ 💷	4	MCC3-2A / CT FAN #1	0	Open	0		
	Туре	Fast Trigger				5	CONT76 / CHILLER CW PUMP		Closed	0.233	
	Element Gen2 Trigger			rigger ID		5	CONT79 / CHILLER CW PUMP		Open	0	
						5	CONT82 / CHILLER CW PUMP		Open	0	
Status Disabled Enable			. 1			5	CONT82 / CHILLER CW PUMP		Open	0	
· · · · · · · · · · · · · · · · · · ·							CP3-E4 / CHW-P6	0	Open	0	
Create TS Subsystem				5	MCC4-2A / CHW PUMP #5	0	Open				
Enable All Disable All											
						Sta	tus Active	Total Load Shedding (MW) 1.362			
Project Settings Study Case ILS Server (Summer)					Load	ID I	Required Load Shedding (MW) 2.928				
Logic Script ILS Server (Summer)					Gro	Contin	Contingency Spinning Reserve (MW) 0				
Method Grp Priority Only					Subsyst	em	Spinning Reserve (MW)				
Server: Running, PLC: Running							Snapshot Report	ŀ	lelp	Close	

<u>_ 8 ×</u>

Microgrid Model – Results and Benefits

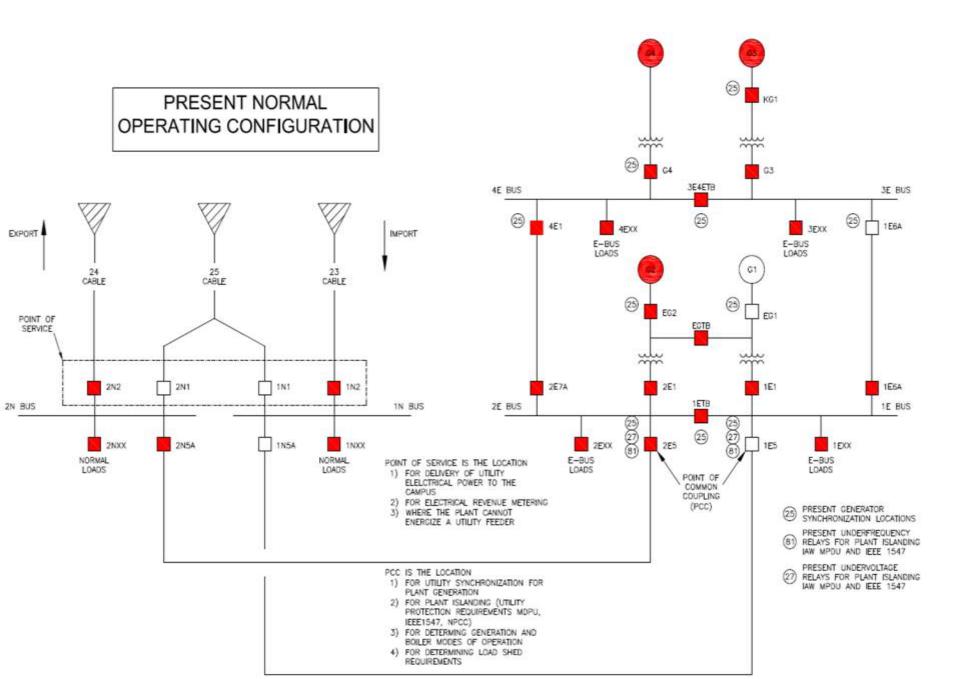
- PMEC's success has demonstrated the strength of the Microgrid model
 - Verified that UMMS can add non-critical portions of the campus into the ILS system (ASC)
 - Maximized UMMS critical load reliability
 - Improved resiliency from external events (Utility Loss Natural Disaster)

Expanding the Microgrid Model

Relocating the PCC provides enhanced Campus Reliability and Resiliency

- > Increase Campus Reliability and Resiliency to external events
 - Natural Disasters no longer jeopardize all the Campus loads
 - Adding more of the campus onto the PMEC's ILS system
 - Maximizing campus on-line reliability
- > Match Campus load to the onsite generation
 - Maintain NFPA 99 requirement for the Campus Critical Loads

Point of Common Coupling


Point of Common Coupling (PCC) in a plant's electrical system can be defined as a location point for:

- Utility Synchronization for Plant Generation
- Plant Islanding
- Determining Generating Modes of Operation
- Determining Load Shed Requirements

This location can be different than the Electrical Utility's Point of Service

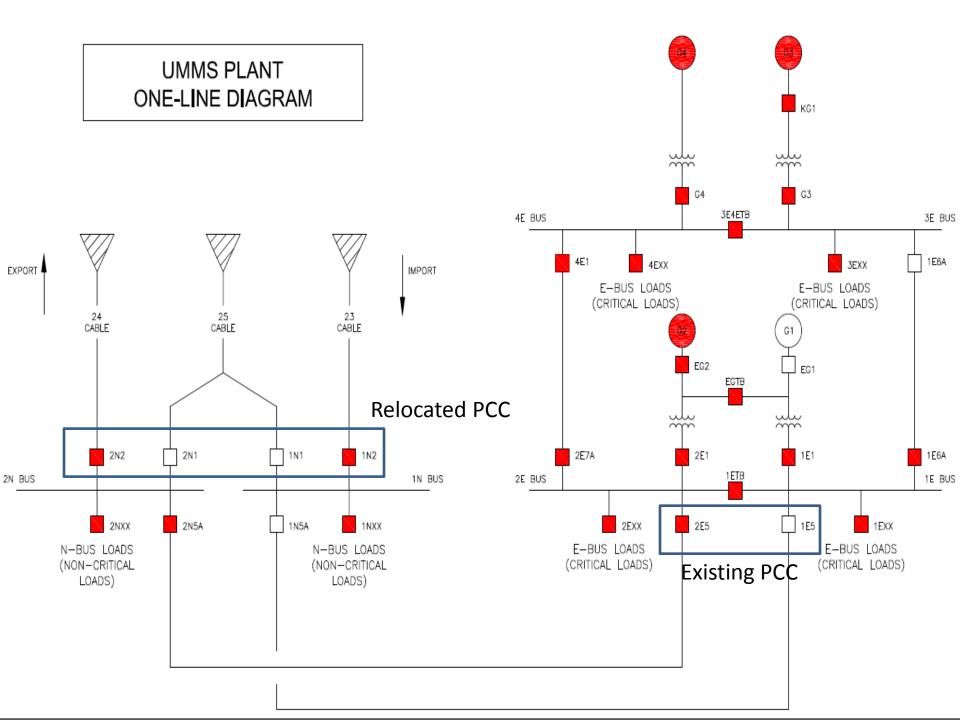
Point of Common Coupling - Present Location

PCC is presently at the interconnection between the Emergency (Critical Loads) and Normal (non-Critical) Buses

- Plant Islanding does not supply power to the Normal Bus
- Plant Spinning reserve is significant and not available Normal Bus

An electrical load survey has shown:

- Spinning reserve is capable of supplying most, if not all, of the UMMS Campus Normal Winter load
- Spinning reserve is capable of supplying much of the UMMS Campus normal Summer loads with limited Load Shedding interruptions


Point of Common Coupling - Relocated

PCC Relocated to the Point of Service

- > When Islanding the Normal Bus is now powered by the Plant
- > Expand PMEC ILS to the Campus Loads (Normal Bus)
 - Improves matching of the Campus load to the onsite generation
 - Onsite generation is capable of supplying all of the Campus Peak Winter loads
 - Generators are capable of supplying over 70% of the UMMS Campus Peak Summer Loads
 - Maintains the NFPA 99 requirement for Critical Loads
- > The NGRID Power Utility is used as a backup power source

Point of Common Coupling - Relocated

Expectations and Goals

- Provide a Campus-wide Microgrid model
- Reduce Island mode transients
- Allow the plant to remain connected to the utility for most inclement conditions

SUMMARY

UMMS Microgrid

Wunderlich-Malec

Using the full power of the PMEC's Intelligent Load Shed system along with the planned PCC move:

The UMMS Microgrid is more than just generators with an extension cord; it is a robust, 24/7/365 asset that provides a resilient, primary energy service to the Campus.

Questions & Thank You

