Current Trends in Thermal Energy Storage

John S. Andrepont, President
The Cool Solutions Company

International District Energy Association (IDEA) Campus Energy Conference
New Orleans, Louisiana – February 27, 2019
Outline

• Introduction: Thermal Energy Storage (TES) in District Cooling
• Current and Growing Trends in TES Applications:
 – Emergency cooling for Mission Critical Facilities
 – Improved economics for CHP
 – Maximizing wind & solar resources
 – Turbine Inlet Cooling (TIC)
 – Low Temp Fluid TES
 – Complementing CHW TES with HW TES
 – Optimizing value with changing/emerging electric rate structures
• Conclusions and Recommendations
Chilled Water (CHW) Thermal Energy Storage (TES)

- An insulated tank, full of water at all times.
- Cool, dense CHW Supply in lower zone, at ~40 °F;
- Warm, less dense CHW Return in upper zone, typically at 50 to 60 °F;
- Narrow “thermocline” (temperature gradient) in between the zones.
- TES is charged, off-peak (nighttime): CHWR pumped from top of tank, cooled in chillers; CHWR flows to bottom of tank; thermocline rises in tank, until tank is 100% cool water.
- TES is discharged, on-peak (daytime): CHWS pumped from bottom of tank, meets cooling loads; CHWS flows to top of tank; thermocline falls in tank, until tank is 100% warm water.

No moving parts or heat exchange in tank; just pumps & valves outside.
30+ years of CHW TES – Including Repeat Owners

From many hundreds of CHW TES, here are just a few Owners, each with *Multiple* TES Installations:

<table>
<thead>
<tr>
<th>Owner</th>
<th># of TES</th>
<th>Storage (ton-hrs)</th>
<th>Peak Shift (tons)</th>
<th>On-Peak Thermal Storage (MWh)</th>
<th>Peak Shift (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>California State Univ. campuses</td>
<td>18</td>
<td>309,000</td>
<td>52,000</td>
<td>216</td>
<td>36</td>
</tr>
<tr>
<td>Univ. of California campuses</td>
<td>9</td>
<td>281,000</td>
<td>47,000</td>
<td>197</td>
<td>33</td>
</tr>
<tr>
<td>Univ. of Nebraska campuses</td>
<td>2</td>
<td>68,000</td>
<td>12,000</td>
<td>51</td>
<td>8</td>
</tr>
<tr>
<td>Univ. of Texas campuses</td>
<td>7</td>
<td>152,000</td>
<td>25,000</td>
<td>106</td>
<td>18</td>
</tr>
<tr>
<td>U.S. (FDA, NASA, Nat’l Labs, NIH, VA)</td>
<td>12</td>
<td>269,000</td>
<td>45,000</td>
<td>202</td>
<td>34</td>
</tr>
<tr>
<td>U.S. DOD (Air Force, Army)</td>
<td>9</td>
<td>203,000</td>
<td>34,000</td>
<td>152</td>
<td>25</td>
</tr>
<tr>
<td>Airports (DFW, LAX, Love, Reagan, SanAnton)</td>
<td>5</td>
<td>152,000</td>
<td>40,000</td>
<td>106</td>
<td>28</td>
</tr>
<tr>
<td>Boeing / Lockheed Martin</td>
<td>5</td>
<td>230,000</td>
<td>38,000</td>
<td>172</td>
<td>29</td>
</tr>
<tr>
<td>Ford / GM / Toyota</td>
<td>13</td>
<td>381,000</td>
<td>63,000</td>
<td>263</td>
<td>44</td>
</tr>
<tr>
<td>Halliburton / Saudi Aramco</td>
<td>4</td>
<td>62,000</td>
<td>10,000</td>
<td>48</td>
<td>8</td>
</tr>
<tr>
<td>Honeywell / IBM / Texas Instruments</td>
<td>8</td>
<td>186,000</td>
<td>31,000</td>
<td>139</td>
<td>23</td>
</tr>
<tr>
<td>3M / State Farm / UPS</td>
<td>10</td>
<td>188,000</td>
<td>31,000</td>
<td>143</td>
<td>24</td>
</tr>
<tr>
<td>Distr St. Paul/ Qatar Cool/ Tabreed/ Trigen</td>
<td>16</td>
<td>517,000</td>
<td>86,000</td>
<td>346</td>
<td>58</td>
</tr>
<tr>
<td>Totals (from just these few)</td>
<td>118</td>
<td>3 million</td>
<td>514,000</td>
<td>2,141</td>
<td>368</td>
</tr>
</tbody>
</table>
Emergency Cooling of MCFs

- Mission Critical Facilities (MCFs) include especially data centers, medical, research, etc. in which cooling cannot be interrupted.
- Power outages can be addressed with on-site UPS; but it may take 10 to 90 minutes to restore full chiller plant operation.
- During that transition, emergency cooling can come for TES.
- That TES must be:
 - Automatic and reliable
 - Able to discharge very rapidly to meet 100% of the critical loads.

CHW TES is a typical choice for that emergency reserve.
Emergency Cooling of MCFs

A few examples:

<table>
<thead>
<tr>
<th>Owner</th>
<th>S/R Temps</th>
<th>Capacity</th>
<th>Discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank of America</td>
<td>45 / 70</td>
<td>2,000</td>
<td>4,170</td>
</tr>
<tr>
<td>Capital One</td>
<td>65 / 75</td>
<td>900</td>
<td>1,500</td>
</tr>
<tr>
<td>DuPont Fabros</td>
<td>65 / 84</td>
<td>1,050</td>
<td>6,030</td>
</tr>
<tr>
<td>Kaiser Hospitals</td>
<td>45 / 60</td>
<td>3,880</td>
<td>2,700</td>
</tr>
<tr>
<td>Princeton Univ.</td>
<td>45 / 60</td>
<td>1,000</td>
<td>2,000</td>
</tr>
</tbody>
</table>

Many have multiple installations of CHW TES, e.g. AOL, B of A, CapOne, DuPont, Equinix, MCI, Nationwide . . .
Flattened Load Profiles for CHP

• CHP is expensive; needs high operating hrs/yr to be cost effective.
• Elec power above CHP must be purchased at high $/kW & $/kWh.
• TES “flattens” peak day elec & thermal profiles.
• This allows:
 – use of larger CHP (at lower Cap$/kW),
 – more hrs/yr of fully loaded CHP operation,
 – fewer kWh/yr of peak elec power purchases, and
 – thus, improved economic results for CHP.

Sometimes, CHP is economically justified, when it wouldn’t be w/o TES.
Flattened Load Profiles for CHP

A few examples:

- Texas A&M Univ., College Park, TX
 - 24,000 Ton-hrs
 - 50 MW CT

- Princeton Univ., Princeton, NJ
 - 40,000 Ton-hrs
 - 15 MW CT

- Nat’l Inst’s of Health, Bethesda, MD
 - 47,500 Ton-hrs
 - 23 MW CT

- TECO, Houston, TX
 - 70,000 Ton-hrs
 - 48 MW CT

Flatter profiles = More hrs/yr of fully loaded CHP = Better CHP economics.
Maximizing Intermittent Wind & Solar Power

• Renewable Portfolio Standards = Increased Wind & Solar power
 – But they are intermittent and often out-of-phase with demand.
 – Coal + Nuclear + Wind power often exceeds nighttime demand.
 – Nighttime power trades negative at times, e.g.:
 • In Texas, as low as negative $0.10/kWh !
 • In Nebraska, as low as negative $0.20/kWh !!

• Therefore, Energy Storage is increasingly critical; one can consider:
 – Batteries, Pumped Hydro, Compressed Air, Flywheels, SMES, Fuel Cells .

 But large CHW TES often excels over other storage in terms of:
 maturity, safety, siting, permitting, schedule, lifetime, efficiency, cap$
Typical Wind Output Only 20% at Peak Demand Time
Texas Grid (ERCOT) Historical Peak Demand

• 2017 summer peak demand: ~70,000 MW
• Installed wind generation: ~23,000 MW (nameplate)
• But wind output during that peak: <600 MW, i.e. only ~2.5% of the installed nameplate wind capacity!

• Thus:
 1. All this expensive, subsidized wind generation has not effectively reduced the need for conventional generation, at all.
 2. Only Energy Storage can make fuller use of the wind power investment.
Issues with Battery Storage

All-electric grids or microgrids will necessarily use batteries for storage; but batteries (even today’s leading choice, Lithium-Ion) are not ideal:

• Material Sourcing (exotic, costly materials, from unreliable locales)
• Safety (potential explosions & fires)
• Environmental (during mat’l extraction & end-of-life disposal)
• Life Expectancy (typically only 7-10 yrs, and with reducing capacity)
• Round-trip Energy Efficiency (typically only 80-85%)
• Capital Cost (typical installed project costs of $500-800/kWh)

*But a microgrid which incorporates electric *and* thermal networks can consider **Thermal** Energy Storage (TES).*
Massachusetts ESI (Energy Storage Initiative)

In December 2017, the State of Massachusetts announced:

- 26 Energy Storage projects
- $20 million in state grants
- $32 million in private “matching funds”
- Average installed capital costs (grants + matching funds):
 - Flywheel Storage @ $948/kWh
 - Battery Storage @ $656/kWh
 - Thermal Energy Storage @ $240/kWh

Batteries may need grants or tax credits to be economic. TES does not.
Maximizing Intermittent Wind & Solar Power

An example:
Some nights in NE, wholesale electric has **negative** rates of ~$0.20/kWh.

Storage of:
- **UNL East Campus**: 16,326 Ton-hrs
 (or 12 MWh electric)

Peak Shift of:
- **UNL East Campus**: up to 4,000 Tons
 (or 3 MW electric)

UNL City Campus: 52,000 Ton-hrs
(or 39 MWh electric)

up to 8,333 Tons
(or 6.25 MW electric)

CHW TES unit Cap$ < half battery $; + TES provides peak chiller plant capacity.
Turbine Inlet Cooling (TIC) of Gas Turbines

• Gas or Combustion Turbine (CT) machines are constant volume.
• High ambient air temps = low air density, mass flow, and power.
• Cooling inlet air with TIC = higher CT power output.
• Various types of TIC:
 – Evaporative cooling: low $; needs water; limtd cooling & power
 – Chiller-based cooling: much more cooling & power; higher Cap$
 – Chillers with CHW TES (vs Chillers w/o TES):
 • reduced chiller plant size & cost (often saves more than $ of TES)
 • Increased on-peak power; lower Capital $/kW; TES essentially free!
Turbine Inlet Cooling (TIC) of Gas Turbines

A few examples:

- Princeton Univ., Princeton, NJ
 - 40,000 Ton-hrs
 - 1 x 15 MW CT

- TECO, Houston, TX
 - 70,000 Ton-hrs
 - 1 x 48 MW CT

- Chicago MPEA, Chicago, IL
 - 123,000 Ton-hrs
 - 3 x 1.1 MW CTs

- Saudi Electricity Company, Riyadh, Saudi Arabia
 - 190,000 Ton-hrs
 - 10 x 75 MW CTs

Hot weather CT outputs are increased by 10 to 30%, at very low Cap$/MW.
Low Temp Fluid TES

• Thermally stratified CHW TES limited to CHWS of 39 to 40 °F.
• At a typical CHWS-to-CHWR Delta T of 12 to 16 °F, CHW TES requires ~1 to 1.33 million gals tank volume per 10,000 Ton-hrs.
• Aqueous Low Temp Fluid = lower supply temp & larger Delta T:
 – LTF Delta T can be 24 °F, or more.
 – This reduces tank volume by 33 to 50%, or more.
 – Or a fixed tank volume stores an extra 50 to 100%, or more.
 – And a fixed pump/pipe size delivers extra 50 to 100%, or more.

 And LTF can inhibit corrosion & microbiological growth.
Low Temp Fluid TES

A few examples:

DFW International Airport
Dallas / Fort Worth, TX
60,000 Ton-hrs
36 / 60 °F

Princeton Univ.
Princeton, NJ
40,000 Ton-hrs
32 / 56 °F

Chicago MPEA
Chicago, IL
123,000 T-hrs
30 / 54 °F

24 °F Delta T means 50 to 100% more capacity in TES & in CHW pumps/piping.
Complementing CHW TES with HW TES

Hot Water (HW) TES has long been used:

• In District HW systems in Scandinavia, China, and Canada.

HW TES is now being used in the US, to complement CHW TES:

• Coupled with heat-recovery chillers for District CHW & HW.
• To store Condensate Return in a District Steam system.
• For seasonal (winter) conversion of a CHW TES tank.
Complementing CHW TES with HW TES

A few examples:

Stanford U – 2 x 45,000 Ton-hrs CHW TES + 1 x 600 MMBtu HW TES

Cal State U-Fullerton – 2 TES tanks
1 CHW TES, 37,000 Ton-hrs @ 40 / 64 °F
1 HW TES, 158 MMBtu @ 168 / 118 °F

District Energy St. Paul –
2 CHW TES tanks:
28,000 and 37,400 Ton-hrs,
One convertible to HW TES

We’ll see more of this as District Steam converts to District HW.
Optimizing Value with Changing Elec Rates

Changing, new or future elec mkts offer opportunity for TES value:

- Various “demand charge” and “Time-of-Use (TOU)” rates
- “Coincident Demand” rates
- “Interruptible” rates
- “Real-Time Pricing (RTP)” rates
- “Global Adjustment (GA)” charges, as in Ontario, Canada
- Short “Super On-Peak” periods met by fast discharge TES

Some utilities pay cash incentives for peak load mgmt via TES.
Optimizing Value with Changing Elec Rates

Some examples, using hourly real-time prices:

Princeton Univ. (40,000 Ton-hrs)
Can fully discharge in only 4 hours.
On some days, it cycles more than 100% of TES capacity: discharge ~33% in a.m., then recharge mid-day, then discharge 100%.

TECO (70,000 Ton-hrs)
Some nights, they are paid ~$0.10/kWh to recharge TES.
Some days, they save up to ~$3.00/kWh or ~$25,000/hr.

TES provides flexibility for various & future electric market scenarios.
Operating and Capital Savings with CHW TES

<table>
<thead>
<tr>
<th>TES Project Type</th>
<th>Owner</th>
<th>Capacity (ton-hrs)</th>
<th>CHW TES Capacity</th>
<th>Annual Operating Savings</th>
<th>Initial Capital Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>retro Washington St U</td>
<td>17,750</td>
<td>$260,000/yr</td>
<td>$1 to 2 million</td>
<td></td>
<td></td>
</tr>
<tr>
<td>new Lisbon Distr Energy</td>
<td>39,800</td>
<td>$1,160,000/yr</td>
<td>$2.5 million</td>
<td></td>
<td></td>
</tr>
<tr>
<td>retro U of Alberta</td>
<td>60,000</td>
<td>$600,000/yr</td>
<td>$4 million</td>
<td></td>
<td></td>
</tr>
<tr>
<td>new Chrysler R&D</td>
<td>68,000</td>
<td>>$1,000,000/yr</td>
<td>$3.6 million</td>
<td></td>
<td></td>
</tr>
<tr>
<td>retro DFW Airport</td>
<td>90,000</td>
<td>~$2,000,000/yr</td>
<td>$6 million</td>
<td></td>
<td></td>
</tr>
<tr>
<td>retro OUCooling district</td>
<td>160,000</td>
<td>>$500,000/yr</td>
<td>>$5 million</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Net Capital Savings accrued from downsizing chiller plants. *CHW TES Cap$ is < that of equivalent chiller plant capacity.*
Conclusions and Recommendations

- TES always reduces peak demand and operating energy costs.
- Large CHW TES can also reduce capital costs (vs chiller plants).
- But TES also provides the flexibility to address a variety of emerging & evolving, current & future trends.

- Consider TES whenever planning Energy Storage or CHP.
- Consider TES especially when planning thermal capacity investments, specifically at times of:
 - New construction,
 - Retrofit capacity expansions, or
 - Retirement / replacement of aging thermal plant equipment.
Questions / Discussion?

Or for a copy of this presentation, contact:

John S. Andrepont
The Cool Solutions Company
CoolSolutionsCo@aol.com
tel: 1-630-353-9690

Laissez les bontemps rouler! (Let the good times roll!)

Laissez les bontemps rouler! (Let the good times roll!)