Campus Energy 2021 BRIDGE TO THE FUTURE Feb. 16-18 | CONNECTING VIRTUALLY WORKSHOPS | Thermal Distribution: March 2 | Microgrid: March 16

Variable Speed Drive for High Load Chiller Operation

Neelraj Sambasivam

Trekking in a Dam

Trekking in a Dam

Energy spend

Load

Capacity - Weight

Energy spend \propto

Climb

Lift - Height

Capacity & Lift (Chiller)

Weight & Height (Person)

Lift – Mother Nature

Dubai weather profile

Dry-bulb Temperature Bins (°F)

Capacity

Low Delta T syndrome

Design Delta T = 9°C								
Delta T (deg C)	9.0	8.7	8.4	8.2	7.9	7.6	7.3	
Reduction	0.0	-0.3	-0.6	-0.8	-1.1	-1.4	-1.7	
Chiller load	100%	97%	94%	91%	88%	85%	81%	

Sequencing

Plant load	25,000	24,500	24,000	23,500	23,000	22,500	22,000	21,500	21,000	20,500	20,000	19,500	19,000	18,500	18,000
	100%	98%	96%	94%	92%	90%	88%	86%	84%	82%	80%	78%	76%	74%	72%
No. Running Chiller	10	10	10	10	10	9	9	9	9	9	8	8	8	8	8
Each Chiller	2,500	2,450	2,400	2,350	2,300	2,500	2,444	2,389	2,333	2,278	2,500	2,438	2,375	2,313	2,250
loading	100%	98%	96%	94%	92%	100%	98%	96%	93%	91%	100%	98%	95%	93%	90%

99% of chiller lifetime spend at off-design condition

Real-world conditions – Search for solution

ANSI/ASHRAE & AHRI

• IPLV / NPLV

IPLV/NPLV						
Load	Time					
100%	1%					
75%	42%					
50%	45%					
25%	12%					

In summary, it is best to use a comprehensive analysis that reflects the actual weather data, operational hours, economizer capabilities and energy drawn by auxiliaries such as pumps and co the chiller and system efficiency. The intended use of the IPLV.IP (NPLV.IP) rating is to comp technologies, enabling a side-by-side relative comparison, and to provide a second certifiable rat by energy codes. A single metric, such as design efficiency or IPLV.IP shall not be used to qu

AHRI Standard 550/590 (I-P) 2020 Standard for Performance Rating of Water-chilling and Heat Pump Water-heating Packages Using the Vapor Compression Cycle

99% of chiller lifetime spend at off-design condition

Why to focus Chiller?

- Chillers have the biggest impact
- Operational cost has become a major criterion

Controls

Solution for off-design chiller efficiency

Entering Cond water	% Input power saving with VSD Chiller compared over CSD chiller									
temp (°F)	100%	98%	96%	94%	92%	90%	88%	86%	84%	82%
95°										-1%
93°				-1%			-1%	-1%		
91°		-1%	0%	0%	0%	1%	1%	1%	1%	1%
89°	-1%	0%	0%	1%	1%	2%	2%	2%	3%	2%
87°		1%	1%	2%	2%	3%	3%	3%	4%	4%
85°	1%	2%	3%	3%	4%	4%	5%	5%	5%	5%
83°	3%	4%	4%	5%	5%	6%	6%	7%	7%	7%
81°	5%	5%	6%	6%	7%	7%	8%	8%	9%	9%
79°	6%	7%	7%	8%	9%	9%	10%	10%	11%	11%
77°	8%	8%	9%	10%	10%	_ 11% _	11%	12%	12%	13%
75°		10%	11%	12%	1 10	13%				15%
73°	11%	12%	13%	13%	12///	15%	15 %	16%	17%	17%
71°	13%	14%	15%	15%	16%	17%	18%	18%	19%	20%
69°	15%	16%	17%	17%	18%	19%	20%	20%	21%	22%
67°	17%	18%	19%	19%	20%	21%	22%	22%	23%	24%
65°	19%	19%	20%	21%	22%	23%	24%	24%	25%	26%
63°	20%	21%	22%	23%	24%	25%	26%	26%	27%	28%
61°	22%	22%	23%	24%	26%	27%	28%	29%	30%	31%

Typical % energy saving for Chiller with VSD

Real-world conditions – Search for solution – High load plant

Annual Specific Power Input

- How can an off-design conditions be taken into efficiency calculation?
- ASPI will help System designers accurately evaluate the performance of different equipment against each other

Design 95 10 876 A Point 85 25 2190 8 Load (Full 80 30 2628 0	nance Chiller						
Point 85 25 2190 E Point 80 30 2628 0							
80 30 2628 C	В						
75 25 2190 C							
65 10 876 E							
Annual Specific Power <u>A x 876 + B x 2190 + C x 2628 + D x 2190 + E</u>	<u>A x 876 + B x 2190 + C x 2628 + D x 2190 + E x 876</u>						
Input (ASPI) 8760	8760						

Capacity	ECWT in DegF	% hours in Year	Number of Hours in year	Performance of the Chiller				
0.0%	95	10	876	А				
80% Design Point Load	85	25	2190	В				
	80	30	2628	С				
	75	25	2190	D				
	65	10	876	E				
Annual S	pecific Power	<u>A x 876 + B x 2190 + C x 2628 + D x 2190 + E x 876</u>						
Input (ASPI)		8760						

Case Study

Past & Present

- DC Plant snapshot
 - ✓ 7 1800TR Constant Speed MV Chillers
 - ✓ 7 Constant Speed Primary Pump
 - ✓ 7 Constant Speed Condenser Pump
 - ✓ 7 Constant Speed Cooling Tower motor

Past & Present

- DC Plant snapshot (Past)
 - ✓ 7 1800TR Constant Speed MV Chillers
 - ✓ 7 Constant Speed Primary Pump
 - ✓ 7 Constant Speed Condenser Pump
 - ✓ 7 Constant Speed Cooling Tower motor
- DC Plant snapshot (Present)
 - ✓ 7 1800TR Variable Speed MV Chillers (1300 kW)
 - ✓ 7 Variable Speed Primary Pump (45 kW)
 - ✓ 7 Variable Speed Condenser Pump (110 kW)
 - ✓ 7 Variable Speed Cooling Tower motor (75 kW)
 - ✓ Advanced Chiller Plant Optimization Programs

Retrofit

- 1790TR centrifugal WC chiller 1300kW (11kV) motor
- LV VSD's on Primary, Condenser, CT motor
- Custom logic / advanced sequences in plant automation system
- Auto-Adaptive Process + Machine learning

Saving & Return on Investment - Estimate

Pay back: 3.7 Year

Industry standard Measurement and verification program

Saving & Return on Investment - Actual

Retrofit

Pay back: 3.2 Year

Can we see the data?

Year around comparisons – kw / ton & saving

Base Line estimation in 2016/17 and measurement & verification was done in 2019/20

Johnson

Controls

Year around comparisons – Plant utilization & saving

Base Line estimation in 2016/17 and measurement & verification was done in 2019/20

Johnson

Controls

Myth Busted !

- > VSD chillers helps only in winter month
- Variable Speed Drives are expensive, with un-attractive payback
- Plant with Thermal Storage will be operating at design load.
- Chillers must be evaluated for Full
 Load Efficiency at "Design" Conditions

- VSD chillers reduces power consumption year around
- Latest VSDs are available with reduced cost & size. It's viable for both retrofit & new projects
- Thermal Storage charging is at off-peak time i.e. lower WB temp – VSD will be more beneficial
- > ASPI is critical parameter to evaluate chillers

Additional benefits of a VSD

- Improved and Constant PF of 0.96
 - Eliminates PF correction capacitors
- Seliminates Inrush Current (<100% FLA)
 - Enhances motor life
 - Reduces emergency power generator size (if required).

Reduced driveline wear

- Reduced **sound level** at lower loads.
- Eliminates inefficiency of **over designing** due to safety.
 - Higher Condenser Water Temp
 - Higher Fouling

Future

- Evaluate plant with ASPI
- Design plant for real world
 efficiency not full load efficiency
- Reduce carbon footprint

