LEADING THE WAY CampusEnergy2022

Feb. 15-18 | Westin Boston Seaport District Hotel | Boston, Mass.

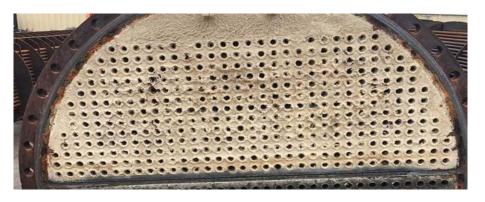
A novel non-phosphorus cooling water treatment technology to address operational and environmental challenges

> IDEA Campus Energy 2022 Thursday, February 17, 2022

Presented by: Ashok Shetty, Ph.D. – Senior Cooling Engineer SUEZ - Water Technologies & Solutions

Q&A will not be answered live

Please submit questions in the Q&A box. The presenters will respond to questions off-line.

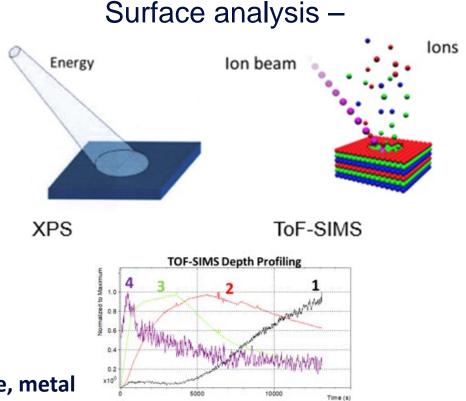


Current challenges w/ phosphorus (P)

- Environmental pressure & changing regulations to limit "P" in effluent water
- Deposition risk in cooling systems
- Algae growth/blooms
- Global phosphorus shortage
- Brand/community image

Feb.15-18 Westin Boston Seaport District Hotel Boston, MA

The right non-P technology solves (for example)


Environmental challenges	 NPDES regulated discharge requiring low or no phosphorus contribution NPDES regulated TSS discharge, with problematic algae 	
Operational challenges	 Calcium phosphate deposition risk in heat exchangers and condensers Microbiological, algae bloom, and algae growth issues Desire to reduce/eliminate acid use and/or decrease water use 	
Supply chain challenges	 Precludes the need for phosphate or phosphonates for corrosion and scaling inhibition 	
Social challenges	 Desire to demonstrate social and environmental responsibility Contribute to corporate sustainability goals 	
LEADING THE WAY CampusEnergy2022	INTERNATIONAL DISTRICT ENERGY	

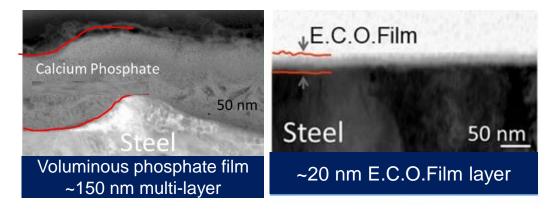
SSOCIAI

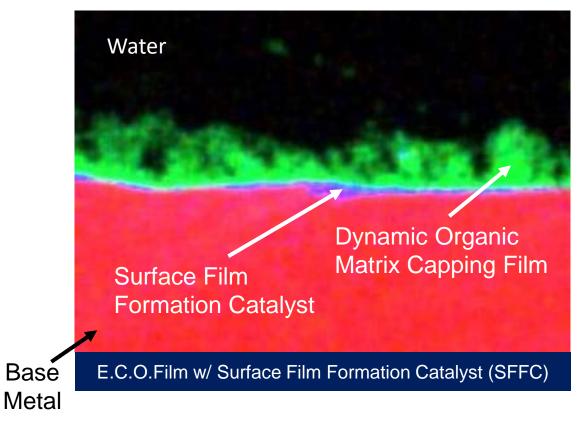
Engineering non-P protective films

SatEQ* – saturation modeling ... multi-component equilibria

Thermodynamics/kinetics, structure-activity/dose-response, metal oxide/mineral salt/treatment chemistry formation, ...

→ new non-P chemistries/guidelines/programs – E.C.O.Film* Engineered Films

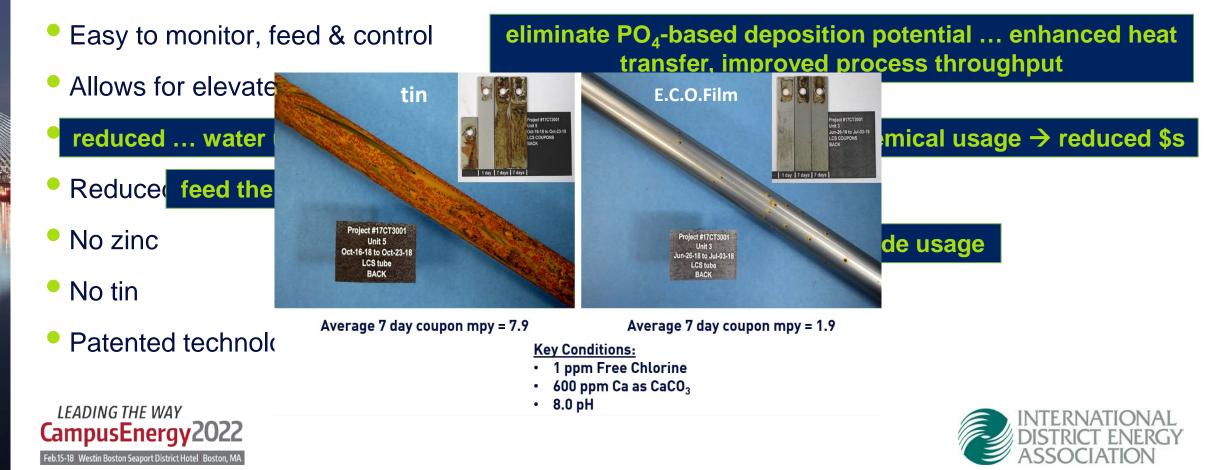



E.C.O.Film* in action

E.C.O.Film was engineered to:

- Function as a direct corrosion inhibitor and a surface film formation facilitator
- Work with the naturally cycled conditions in the system to enhance natural corrosion control
- Impede and reduce electron flow directly at the metal-electrolyte interface by facilitating matrix-CHO-SFFC film formation*

CHO = Carbon-Hydrogen-Oxygen-based inhibitor SFFC = Surface Film Formation Catalyst.



* Trademark of SUEZ; may be registered in one or more countries; E.C.O.Film = Engineered Carboxylate Oxide Film; May contain trace amounts.

What is E.C.O.Film?

- New cooling water technology using advanced in-situ surface film engineering for corrosion control
- Provides scale/deposit control & corrosion control w/o the use of phosphorus-based molecules

E.C.O.Film case studies

Case 1 – Midwestern power plant – environmental focus E.C.O.Film to meet stricter phosphorus discharge regulations

Case 2 – Midwestern power plant – environmental focus E.C.O.Film to address algae growth and meet TSS limits

Case 3 – Southeastern chemical plant – operational focus E.C.O.Film to improve calcium deposition and mild steel corrosion protection

Case 4 – Midwestern dry corn ethanol plant – environmental & operational focus E.C.O.Film to achieve stricter phosphorus discharge limits and improve mild steel corrosion protection

E.C.O.Film case study value

Case 1 – Midwestern power plant – environmental challenge resolved – Capital cost avoidance of \$2 million USD

Case 2 – Midwestern power plant – environmental challenge resolved – Saved >\$2 million USD annually in specialty chemical costs

Case 3 – Southeastern chemical plant – operational challenge resolved – <u>Reduced water usage, reduced sulfuric acid usage, and specialty</u> <u>chemical costs savings of \$100,000/year USD</u>

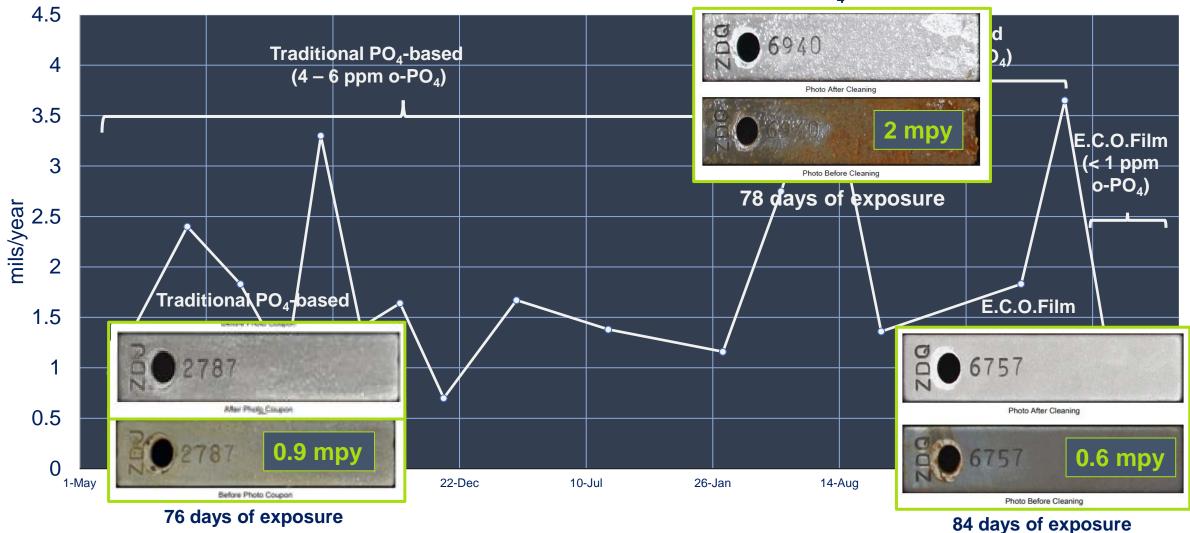
Case 4 – Midwestern dry corn ethanol plant – environmental & operational \$140,000/year USD savings – compliance and pipe replacement

	Case 4 - Midwestern Dry Corn Ethanol Plant	
Plant Details	Dry corn mill ethanol plant	
Makeup Water	Well water, RO water	
Blowdown Water	Discharge to river	
Cooling Tower	Counterflow tower with high efficiency fill	
System Volume	3,407 m ³ (900,000 gallons)	
Recirculation Rate	227 m³/min (60,000 GPM)	
ΔΤ	8.3 – 11.1 C (15 – 20 F)	
T _{skin} , max; T _{bulk} , max	71.1 C (160 F) T _{skin} ; 60 C (140 F) T _{bulk}	
Metallurgy	Mild Steel, Stainless Steels, ADM Brass	
Why non-P?	Stricter (lower) phosphorus regulations	

- Traditional alkaline pH/phosphate program to low phosphorus program due to lower phosphorus discharge limit (2018)
- Mild steel corrosion results were satisfactory at 3 mpy
- A move to E.C.O.Film to ensure discharge requirement met and to improve performance

Program tower operation:

- MU water blend ... well water and RO permeate
- 5 6 cycles (TDS-limited)
- pH 8.2 (raised from pH 8.0); w/ sulfuric acid
- E.C.O.Film; o-PO₄ discontinued; triazole
- Oxidizing biocide (unchanged)


<u>Goals</u>

- maintain <0.68 ppm phosphorus, as P
- improve on Mild Steel corrosion rate (<3 mpy)

Low PO₄-based

LEADING THE WAY CampusEnergy2022 Feb.15-18 Westin Boston Seaport District Hotel Boston, MA

Results summary:		Value
Challenges:	 Reduced P limit of 0.68 ppm (as P) Maintain < 3 mpy (mild steel) 	 Avoided need for capital for PO₄ removal
Conditions:	 Ca: 900 – 1,100 ppm (as CaCO₃) pH: 8.1 – 8.3 	 Avoidance of environmental discharge fees
	• $o-PO_4$: < 1 ppm (as PO ₄)	Reduced P loading to the river by
Solution:	 E.C.O.Film; o-PO₄ discontinued; triazole 	60% algae reduction potential of 380,000 lbs/year
Results:	Achieved	 Mild steel corrosion rates
	 Mild steel corrosion rates achieved Phosphorus within discharge limits 	reduced 70% \$140K/year savings - fees for non-compliance and pipe

replacement cost avoidance

What E.C.O.Film can do for your facility

- Assist in ensuring changing environmental discharge requirements are met
- Reduce the risk of deposition and reduce the risk of surprises in operations
- Reduce biological growth challenges (non-P)
- Reduce exposure to phosphorous supply challenges
- Support & reinforce brand image and community goals

Address environmental & operational challenges and impact the bottom line \$s, plus!

NO PHOSPHATE. NO DEPOSITION. NO SURPRISES. E.C.O.Fim

Surface film engineering with non-P technology Further resources

Recent papers at CTI:

- "Metal and Organic Solutions for Reduced Phosphorus Applications", P.R. Frail, C.C. Pierce, CTI TP19-10, 2019
- "Constructing non-P Passivation Films for Cooling Applications: Surface Science Perspective", P.R. Frail, CTI TP20-24, 2020

Thank You!

Ashok Shetty Ph.D. Senior Cooling Engineer SUEZ - Water Technologies & Solutions ashok.shetty@suez.com

